A Dual-Cation Exchange Membrane Electrolyzer for Continuous H 2 Production from Seawater
Direct seawater splitting (DSS) offers an aspirational route toward green hydrogen (H ) production but remains challenging when operating in a practically continuous manner, mainly due to the difficulty in establishing the water supply-consumption balance under the interference from impurity ions. A...
Gespeichert in:
Veröffentlicht in: | Advanced science 2024-07, Vol.11 (25), p.e2401702 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 25 |
container_start_page | e2401702 |
container_title | Advanced science |
container_volume | 11 |
creator | Ren, Yongwen Fan, Faying Zhang, Yaojian Chen, Lin Wang, Zhe Li, Jiedong Zhao, Jingwen Tang, Bo Cui, Guanglei |
description | Direct seawater splitting (DSS) offers an aspirational route toward green hydrogen (H
) production but remains challenging when operating in a practically continuous manner, mainly due to the difficulty in establishing the water supply-consumption balance under the interference from impurity ions. A DSS system is reported for continuous ampere-level H
production by coupling a dual-cation exchange membrane (CEM) three-compartment architecture with a circulatory electrolyte design. Monovalent-selective CEMs decouple the transmembrane water migration from interferences of Mg
, Ca
, and Cl
ions while maintaining ionic neutrality during electrolysis; the self-loop concentrated alkaline electrolyte ensures the constant gradient of water chemical potential, allowing a specific water supply-consumption balance relationship in a seawater-electrolyte-H
sequence to be built among an expanded current range. Even paired with commercialized Ni foams, this electrolyzer (model size: 2 × 2 cm
) continuously produces H
from flowing seawater with a rate of 7.5 mL min
at an industrially relevant current of 1.0 A over 100 h. More importantly, the energy consumption can be further reduced by coupling more efficient NiMo/NiFe foams (≈6.2 kWh Nm
H
at 1.0 A), demonstrating the potential to further optimize the continuous DSS electrolyzer for practical applications. |
doi_str_mv | 10.1002/advs.202401702 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_advs_202401702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38569463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c623-815b71c674c0cc2aa8e7d6c4f90af672c3875d90775ec0faacdb952d8e4421463</originalsourceid><addsrcrecordid>eNpNkEtPwkAUhSdGIwTZujTzB4p3Hu1Ml6QimGA0kYW7ZjoPxbQdMtOq-OsFUeLqnsX9TnI-hC4JTAgAvVbmPU4oUA5EAD1BQ0pymTDJ-em_PEDjGN8AgKRMcCLP0YDJNMt5xoboeYpvelUnherWvsWzT_2q2heL721TBdVaPKut7oKvt182YOcDLnzbrdve9xEvMMWPwZte_8Au-AY_WfWhOhsu0JlTdbTj3ztCq9vZqlgky4f5XTFdJjqjLJEkrQTRmeAatKZKSStMprnLQblMUM2kSE0OQqRWg1NKmypPqZGWc0p2C0ZocqjVwccYrCs3Yd2osC0JlHtJ5V5SeZS0A64OwKavGmuO739K2DeoNmKv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Dual-Cation Exchange Membrane Electrolyzer for Continuous H 2 Production from Seawater</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ren, Yongwen ; Fan, Faying ; Zhang, Yaojian ; Chen, Lin ; Wang, Zhe ; Li, Jiedong ; Zhao, Jingwen ; Tang, Bo ; Cui, Guanglei</creator><creatorcontrib>Ren, Yongwen ; Fan, Faying ; Zhang, Yaojian ; Chen, Lin ; Wang, Zhe ; Li, Jiedong ; Zhao, Jingwen ; Tang, Bo ; Cui, Guanglei</creatorcontrib><description>Direct seawater splitting (DSS) offers an aspirational route toward green hydrogen (H
) production but remains challenging when operating in a practically continuous manner, mainly due to the difficulty in establishing the water supply-consumption balance under the interference from impurity ions. A DSS system is reported for continuous ampere-level H
production by coupling a dual-cation exchange membrane (CEM) three-compartment architecture with a circulatory electrolyte design. Monovalent-selective CEMs decouple the transmembrane water migration from interferences of Mg
, Ca
, and Cl
ions while maintaining ionic neutrality during electrolysis; the self-loop concentrated alkaline electrolyte ensures the constant gradient of water chemical potential, allowing a specific water supply-consumption balance relationship in a seawater-electrolyte-H
sequence to be built among an expanded current range. Even paired with commercialized Ni foams, this electrolyzer (model size: 2 × 2 cm
) continuously produces H
from flowing seawater with a rate of 7.5 mL min
at an industrially relevant current of 1.0 A over 100 h. More importantly, the energy consumption can be further reduced by coupling more efficient NiMo/NiFe foams (≈6.2 kWh Nm
H
at 1.0 A), demonstrating the potential to further optimize the continuous DSS electrolyzer for practical applications.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202401702</identifier><identifier>PMID: 38569463</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Advanced science, 2024-07, Vol.11 (25), p.e2401702</ispartof><rights>2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c623-815b71c674c0cc2aa8e7d6c4f90af672c3875d90775ec0faacdb952d8e4421463</cites><orcidid>0000-0001-5987-7569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38569463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ren, Yongwen</creatorcontrib><creatorcontrib>Fan, Faying</creatorcontrib><creatorcontrib>Zhang, Yaojian</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Li, Jiedong</creatorcontrib><creatorcontrib>Zhao, Jingwen</creatorcontrib><creatorcontrib>Tang, Bo</creatorcontrib><creatorcontrib>Cui, Guanglei</creatorcontrib><title>A Dual-Cation Exchange Membrane Electrolyzer for Continuous H 2 Production from Seawater</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>Direct seawater splitting (DSS) offers an aspirational route toward green hydrogen (H
) production but remains challenging when operating in a practically continuous manner, mainly due to the difficulty in establishing the water supply-consumption balance under the interference from impurity ions. A DSS system is reported for continuous ampere-level H
production by coupling a dual-cation exchange membrane (CEM) three-compartment architecture with a circulatory electrolyte design. Monovalent-selective CEMs decouple the transmembrane water migration from interferences of Mg
, Ca
, and Cl
ions while maintaining ionic neutrality during electrolysis; the self-loop concentrated alkaline electrolyte ensures the constant gradient of water chemical potential, allowing a specific water supply-consumption balance relationship in a seawater-electrolyte-H
sequence to be built among an expanded current range. Even paired with commercialized Ni foams, this electrolyzer (model size: 2 × 2 cm
) continuously produces H
from flowing seawater with a rate of 7.5 mL min
at an industrially relevant current of 1.0 A over 100 h. More importantly, the energy consumption can be further reduced by coupling more efficient NiMo/NiFe foams (≈6.2 kWh Nm
H
at 1.0 A), demonstrating the potential to further optimize the continuous DSS electrolyzer for practical applications.</description><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEtPwkAUhSdGIwTZujTzB4p3Hu1Ml6QimGA0kYW7ZjoPxbQdMtOq-OsFUeLqnsX9TnI-hC4JTAgAvVbmPU4oUA5EAD1BQ0pymTDJ-em_PEDjGN8AgKRMcCLP0YDJNMt5xoboeYpvelUnherWvsWzT_2q2heL721TBdVaPKut7oKvt182YOcDLnzbrdve9xEvMMWPwZte_8Au-AY_WfWhOhsu0JlTdbTj3ztCq9vZqlgky4f5XTFdJjqjLJEkrQTRmeAatKZKSStMprnLQblMUM2kSE0OQqRWg1NKmypPqZGWc0p2C0ZocqjVwccYrCs3Yd2osC0JlHtJ5V5SeZS0A64OwKavGmuO739K2DeoNmKv</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Ren, Yongwen</creator><creator>Fan, Faying</creator><creator>Zhang, Yaojian</creator><creator>Chen, Lin</creator><creator>Wang, Zhe</creator><creator>Li, Jiedong</creator><creator>Zhao, Jingwen</creator><creator>Tang, Bo</creator><creator>Cui, Guanglei</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5987-7569</orcidid></search><sort><creationdate>202407</creationdate><title>A Dual-Cation Exchange Membrane Electrolyzer for Continuous H 2 Production from Seawater</title><author>Ren, Yongwen ; Fan, Faying ; Zhang, Yaojian ; Chen, Lin ; Wang, Zhe ; Li, Jiedong ; Zhao, Jingwen ; Tang, Bo ; Cui, Guanglei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c623-815b71c674c0cc2aa8e7d6c4f90af672c3875d90775ec0faacdb952d8e4421463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Yongwen</creatorcontrib><creatorcontrib>Fan, Faying</creatorcontrib><creatorcontrib>Zhang, Yaojian</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Li, Jiedong</creatorcontrib><creatorcontrib>Zhao, Jingwen</creatorcontrib><creatorcontrib>Tang, Bo</creatorcontrib><creatorcontrib>Cui, Guanglei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Yongwen</au><au>Fan, Faying</au><au>Zhang, Yaojian</au><au>Chen, Lin</au><au>Wang, Zhe</au><au>Li, Jiedong</au><au>Zhao, Jingwen</au><au>Tang, Bo</au><au>Cui, Guanglei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Dual-Cation Exchange Membrane Electrolyzer for Continuous H 2 Production from Seawater</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2024-07</date><risdate>2024</risdate><volume>11</volume><issue>25</issue><spage>e2401702</spage><pages>e2401702-</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Direct seawater splitting (DSS) offers an aspirational route toward green hydrogen (H
) production but remains challenging when operating in a practically continuous manner, mainly due to the difficulty in establishing the water supply-consumption balance under the interference from impurity ions. A DSS system is reported for continuous ampere-level H
production by coupling a dual-cation exchange membrane (CEM) three-compartment architecture with a circulatory electrolyte design. Monovalent-selective CEMs decouple the transmembrane water migration from interferences of Mg
, Ca
, and Cl
ions while maintaining ionic neutrality during electrolysis; the self-loop concentrated alkaline electrolyte ensures the constant gradient of water chemical potential, allowing a specific water supply-consumption balance relationship in a seawater-electrolyte-H
sequence to be built among an expanded current range. Even paired with commercialized Ni foams, this electrolyzer (model size: 2 × 2 cm
) continuously produces H
from flowing seawater with a rate of 7.5 mL min
at an industrially relevant current of 1.0 A over 100 h. More importantly, the energy consumption can be further reduced by coupling more efficient NiMo/NiFe foams (≈6.2 kWh Nm
H
at 1.0 A), demonstrating the potential to further optimize the continuous DSS electrolyzer for practical applications.</abstract><cop>Germany</cop><pmid>38569463</pmid><doi>10.1002/advs.202401702</doi><orcidid>https://orcid.org/0000-0001-5987-7569</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2198-3844 |
ispartof | Advanced science, 2024-07, Vol.11 (25), p.e2401702 |
issn | 2198-3844 2198-3844 |
language | eng |
recordid | cdi_crossref_primary_10_1002_advs_202401702 |
source | Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central |
title | A Dual-Cation Exchange Membrane Electrolyzer for Continuous H 2 Production from Seawater |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T10%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Dual-Cation%20Exchange%20Membrane%20Electrolyzer%20for%20Continuous%20H%202%20Production%20from%20Seawater&rft.jtitle=Advanced%20science&rft.au=Ren,%20Yongwen&rft.date=2024-07&rft.volume=11&rft.issue=25&rft.spage=e2401702&rft.pages=e2401702-&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202401702&rft_dat=%3Cpubmed_cross%3E38569463%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38569463&rfr_iscdi=true |