A Dual-Cation Exchange Membrane Electrolyzer for Continuous H 2 Production from Seawater

Direct seawater splitting (DSS) offers an aspirational route toward green hydrogen (H ) production but remains challenging when operating in a practically continuous manner, mainly due to the difficulty in establishing the water supply-consumption balance under the interference from impurity ions. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced science 2024-07, Vol.11 (25), p.e2401702
Hauptverfasser: Ren, Yongwen, Fan, Faying, Zhang, Yaojian, Chen, Lin, Wang, Zhe, Li, Jiedong, Zhao, Jingwen, Tang, Bo, Cui, Guanglei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 25
container_start_page e2401702
container_title Advanced science
container_volume 11
creator Ren, Yongwen
Fan, Faying
Zhang, Yaojian
Chen, Lin
Wang, Zhe
Li, Jiedong
Zhao, Jingwen
Tang, Bo
Cui, Guanglei
description Direct seawater splitting (DSS) offers an aspirational route toward green hydrogen (H ) production but remains challenging when operating in a practically continuous manner, mainly due to the difficulty in establishing the water supply-consumption balance under the interference from impurity ions. A DSS system is reported for continuous ampere-level H production by coupling a dual-cation exchange membrane (CEM) three-compartment architecture with a circulatory electrolyte design. Monovalent-selective CEMs decouple the transmembrane water migration from interferences of Mg , Ca , and Cl ions while maintaining ionic neutrality during electrolysis; the self-loop concentrated alkaline electrolyte ensures the constant gradient of water chemical potential, allowing a specific water supply-consumption balance relationship in a seawater-electrolyte-H sequence to be built among an expanded current range. Even paired with commercialized Ni foams, this electrolyzer (model size: 2 × 2 cm ) continuously produces H from flowing seawater with a rate of 7.5 mL min at an industrially relevant current of 1.0 A over 100 h. More importantly, the energy consumption can be further reduced by coupling more efficient NiMo/NiFe foams (≈6.2 kWh Nm H at 1.0 A), demonstrating the potential to further optimize the continuous DSS electrolyzer for practical applications.
doi_str_mv 10.1002/advs.202401702
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_advs_202401702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38569463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c623-815b71c674c0cc2aa8e7d6c4f90af672c3875d90775ec0faacdb952d8e4421463</originalsourceid><addsrcrecordid>eNpNkEtPwkAUhSdGIwTZujTzB4p3Hu1Ml6QimGA0kYW7ZjoPxbQdMtOq-OsFUeLqnsX9TnI-hC4JTAgAvVbmPU4oUA5EAD1BQ0pymTDJ-em_PEDjGN8AgKRMcCLP0YDJNMt5xoboeYpvelUnherWvsWzT_2q2heL721TBdVaPKut7oKvt182YOcDLnzbrdve9xEvMMWPwZte_8Au-AY_WfWhOhsu0JlTdbTj3ztCq9vZqlgky4f5XTFdJjqjLJEkrQTRmeAatKZKSStMprnLQblMUM2kSE0OQqRWg1NKmypPqZGWc0p2C0ZocqjVwccYrCs3Yd2osC0JlHtJ5V5SeZS0A64OwKavGmuO739K2DeoNmKv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Dual-Cation Exchange Membrane Electrolyzer for Continuous H 2 Production from Seawater</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ren, Yongwen ; Fan, Faying ; Zhang, Yaojian ; Chen, Lin ; Wang, Zhe ; Li, Jiedong ; Zhao, Jingwen ; Tang, Bo ; Cui, Guanglei</creator><creatorcontrib>Ren, Yongwen ; Fan, Faying ; Zhang, Yaojian ; Chen, Lin ; Wang, Zhe ; Li, Jiedong ; Zhao, Jingwen ; Tang, Bo ; Cui, Guanglei</creatorcontrib><description>Direct seawater splitting (DSS) offers an aspirational route toward green hydrogen (H ) production but remains challenging when operating in a practically continuous manner, mainly due to the difficulty in establishing the water supply-consumption balance under the interference from impurity ions. A DSS system is reported for continuous ampere-level H production by coupling a dual-cation exchange membrane (CEM) three-compartment architecture with a circulatory electrolyte design. Monovalent-selective CEMs decouple the transmembrane water migration from interferences of Mg , Ca , and Cl ions while maintaining ionic neutrality during electrolysis; the self-loop concentrated alkaline electrolyte ensures the constant gradient of water chemical potential, allowing a specific water supply-consumption balance relationship in a seawater-electrolyte-H sequence to be built among an expanded current range. Even paired with commercialized Ni foams, this electrolyzer (model size: 2 × 2 cm ) continuously produces H from flowing seawater with a rate of 7.5 mL min at an industrially relevant current of 1.0 A over 100 h. More importantly, the energy consumption can be further reduced by coupling more efficient NiMo/NiFe foams (≈6.2 kWh Nm H at 1.0 A), demonstrating the potential to further optimize the continuous DSS electrolyzer for practical applications.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202401702</identifier><identifier>PMID: 38569463</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Advanced science, 2024-07, Vol.11 (25), p.e2401702</ispartof><rights>2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c623-815b71c674c0cc2aa8e7d6c4f90af672c3875d90775ec0faacdb952d8e4421463</cites><orcidid>0000-0001-5987-7569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38569463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ren, Yongwen</creatorcontrib><creatorcontrib>Fan, Faying</creatorcontrib><creatorcontrib>Zhang, Yaojian</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Li, Jiedong</creatorcontrib><creatorcontrib>Zhao, Jingwen</creatorcontrib><creatorcontrib>Tang, Bo</creatorcontrib><creatorcontrib>Cui, Guanglei</creatorcontrib><title>A Dual-Cation Exchange Membrane Electrolyzer for Continuous H 2 Production from Seawater</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>Direct seawater splitting (DSS) offers an aspirational route toward green hydrogen (H ) production but remains challenging when operating in a practically continuous manner, mainly due to the difficulty in establishing the water supply-consumption balance under the interference from impurity ions. A DSS system is reported for continuous ampere-level H production by coupling a dual-cation exchange membrane (CEM) three-compartment architecture with a circulatory electrolyte design. Monovalent-selective CEMs decouple the transmembrane water migration from interferences of Mg , Ca , and Cl ions while maintaining ionic neutrality during electrolysis; the self-loop concentrated alkaline electrolyte ensures the constant gradient of water chemical potential, allowing a specific water supply-consumption balance relationship in a seawater-electrolyte-H sequence to be built among an expanded current range. Even paired with commercialized Ni foams, this electrolyzer (model size: 2 × 2 cm ) continuously produces H from flowing seawater with a rate of 7.5 mL min at an industrially relevant current of 1.0 A over 100 h. More importantly, the energy consumption can be further reduced by coupling more efficient NiMo/NiFe foams (≈6.2 kWh Nm H at 1.0 A), demonstrating the potential to further optimize the continuous DSS electrolyzer for practical applications.</description><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEtPwkAUhSdGIwTZujTzB4p3Hu1Ml6QimGA0kYW7ZjoPxbQdMtOq-OsFUeLqnsX9TnI-hC4JTAgAvVbmPU4oUA5EAD1BQ0pymTDJ-em_PEDjGN8AgKRMcCLP0YDJNMt5xoboeYpvelUnherWvsWzT_2q2heL721TBdVaPKut7oKvt182YOcDLnzbrdve9xEvMMWPwZte_8Au-AY_WfWhOhsu0JlTdbTj3ztCq9vZqlgky4f5XTFdJjqjLJEkrQTRmeAatKZKSStMprnLQblMUM2kSE0OQqRWg1NKmypPqZGWc0p2C0ZocqjVwccYrCs3Yd2osC0JlHtJ5V5SeZS0A64OwKavGmuO739K2DeoNmKv</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Ren, Yongwen</creator><creator>Fan, Faying</creator><creator>Zhang, Yaojian</creator><creator>Chen, Lin</creator><creator>Wang, Zhe</creator><creator>Li, Jiedong</creator><creator>Zhao, Jingwen</creator><creator>Tang, Bo</creator><creator>Cui, Guanglei</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5987-7569</orcidid></search><sort><creationdate>202407</creationdate><title>A Dual-Cation Exchange Membrane Electrolyzer for Continuous H 2 Production from Seawater</title><author>Ren, Yongwen ; Fan, Faying ; Zhang, Yaojian ; Chen, Lin ; Wang, Zhe ; Li, Jiedong ; Zhao, Jingwen ; Tang, Bo ; Cui, Guanglei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c623-815b71c674c0cc2aa8e7d6c4f90af672c3875d90775ec0faacdb952d8e4421463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Yongwen</creatorcontrib><creatorcontrib>Fan, Faying</creatorcontrib><creatorcontrib>Zhang, Yaojian</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Li, Jiedong</creatorcontrib><creatorcontrib>Zhao, Jingwen</creatorcontrib><creatorcontrib>Tang, Bo</creatorcontrib><creatorcontrib>Cui, Guanglei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Yongwen</au><au>Fan, Faying</au><au>Zhang, Yaojian</au><au>Chen, Lin</au><au>Wang, Zhe</au><au>Li, Jiedong</au><au>Zhao, Jingwen</au><au>Tang, Bo</au><au>Cui, Guanglei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Dual-Cation Exchange Membrane Electrolyzer for Continuous H 2 Production from Seawater</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2024-07</date><risdate>2024</risdate><volume>11</volume><issue>25</issue><spage>e2401702</spage><pages>e2401702-</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Direct seawater splitting (DSS) offers an aspirational route toward green hydrogen (H ) production but remains challenging when operating in a practically continuous manner, mainly due to the difficulty in establishing the water supply-consumption balance under the interference from impurity ions. A DSS system is reported for continuous ampere-level H production by coupling a dual-cation exchange membrane (CEM) three-compartment architecture with a circulatory electrolyte design. Monovalent-selective CEMs decouple the transmembrane water migration from interferences of Mg , Ca , and Cl ions while maintaining ionic neutrality during electrolysis; the self-loop concentrated alkaline electrolyte ensures the constant gradient of water chemical potential, allowing a specific water supply-consumption balance relationship in a seawater-electrolyte-H sequence to be built among an expanded current range. Even paired with commercialized Ni foams, this electrolyzer (model size: 2 × 2 cm ) continuously produces H from flowing seawater with a rate of 7.5 mL min at an industrially relevant current of 1.0 A over 100 h. More importantly, the energy consumption can be further reduced by coupling more efficient NiMo/NiFe foams (≈6.2 kWh Nm H at 1.0 A), demonstrating the potential to further optimize the continuous DSS electrolyzer for practical applications.</abstract><cop>Germany</cop><pmid>38569463</pmid><doi>10.1002/advs.202401702</doi><orcidid>https://orcid.org/0000-0001-5987-7569</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2198-3844
ispartof Advanced science, 2024-07, Vol.11 (25), p.e2401702
issn 2198-3844
2198-3844
language eng
recordid cdi_crossref_primary_10_1002_advs_202401702
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central
title A Dual-Cation Exchange Membrane Electrolyzer for Continuous H 2 Production from Seawater
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T10%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Dual-Cation%20Exchange%20Membrane%20Electrolyzer%20for%20Continuous%20H%202%20Production%20from%20Seawater&rft.jtitle=Advanced%20science&rft.au=Ren,%20Yongwen&rft.date=2024-07&rft.volume=11&rft.issue=25&rft.spage=e2401702&rft.pages=e2401702-&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202401702&rft_dat=%3Cpubmed_cross%3E38569463%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38569463&rfr_iscdi=true