Atomic Identification of Interfaces in Individual Core@shell Quantum Dots
CdSe@CdS Core@shell quantum dots (QDs) have been widely studied in recent years, due to their architecture which allows to tailor properties by controlling structure and composition. However, since CdSe and CdS have the same crystal structure, same cations, and similar lattice parameters, it is very...
Gespeichert in:
Veröffentlicht in: | Advanced science 2021-11, Vol.8 (22), p.e2102784-n/a, Article 2102784 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 22 |
container_start_page | e2102784 |
container_title | Advanced science |
container_volume | 8 |
creator | Liu, Guiju Liang, Wenshuang Xue, Xuyan Rosei, Federico Wang, Yiqian |
description | CdSe@CdS Core@shell quantum dots (QDs) have been widely studied in recent years, due to their architecture which allows to tailor properties by controlling structure and composition. However, since CdSe and CdS have the same crystal structure, same cations, and similar lattice parameters, it is very challenging to image the interface. Herein, high‐resolution transmission electron microscopy, high‐angle annular dark‐field imaging, and energy‐dispersive X‐ray spectroscopy elemental mapping are combined to characterize the core@shell structure and identify the interface in the CdSe@CdS QDs with different CdS shell thicknesses. By examining changes in lattice spacing in an individual CdSe@CdS quantum dot, the atomic core@shell interface is identified. For thin‐shelled QDs, an ideal coherent interface forms between core and shell due to the small lattice mismatch, and the lattice spacing remains unchanged at the core and shell regions. For thick‐shelled QDs, the lattice spacing is different at the core and shell regions, while the heterostructured interface is still coherent and cannot be clearly imaged. As the shell thickness further increases, a sharp core@shell interface appears. The results define an approach to characterize the heterostructure of two materials with the same crystalline structure and cations.
A simple method is reported to identify the interface in individual CdSe@CdS QDs. For thin‐shelled QDs, an ideal coherent interface forms between core and shell, and the lattice spacing remains unchanged. For thick‐shelled QDs, the lattice spacing is different at the core and shell regions. As the shell thickness further increases, a sharp core@shell interface appears. |
doi_str_mv | 10.1002/advs.202102784 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_advs_202102784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d394d63a1b294131960f603be4e07a14</doaj_id><sourcerecordid>2597985816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5065-c3da26bfacb3a38c0920f7b3d1ab5543d2b48e8964f9f2b41f192854eba26e073</originalsourceid><addsrcrecordid>eNqNks1rFDEYxgdRbKm9eh7wIsiu-Z7kIi5TWwcKIn5cQz7bLLNJTWa29L83210W60VPeZM8zy8v75OmeQ3BEgKA3iu7LUsEEASo4-RZc4qg4AvMCXn-R33SnJeyBgBAijsC-cvmBBNGOoLJaTOsprQJph2si1PwwagppNgm3w5xctkr40obYt3ZsA12VmPbp-w-lls3ju3XWcVp3rQXaSqvmhdejcWdH9az5sflp-_958X1l6uhX10vDAWMLgy2CjFdwRorzA0QCPhOYwuVppRgizThjgtGvPC1hh4KxClxutoc6PBZM-y5Nqm1vMtho_KDTCrIx4OUb6TKUzCjkxYLYhlWUCNBIIaCAc8A1o5UkIKksj7sWXez3jhr6gyyGp9An97EcCtv0lZyKhhEqALeHgA5_ZpdmeQmFFNHo6JLc5GIcgRrVnT31pu_pOs051hHVVWiE5xyyKpquVeZnErJzh-bgUDuQpe70OUx9Grge8O908kXE1w07miqqXeA8Y5QsPsAfZge8-3THKdqfff_1qomB3UY3cM_2pKri5_fMOAU_wauR82-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597985816</pqid></control><display><type>article</type><title>Atomic Identification of Interfaces in Individual Core@shell Quantum Dots</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Liu, Guiju ; Liang, Wenshuang ; Xue, Xuyan ; Rosei, Federico ; Wang, Yiqian</creator><creatorcontrib>Liu, Guiju ; Liang, Wenshuang ; Xue, Xuyan ; Rosei, Federico ; Wang, Yiqian</creatorcontrib><description>CdSe@CdS Core@shell quantum dots (QDs) have been widely studied in recent years, due to their architecture which allows to tailor properties by controlling structure and composition. However, since CdSe and CdS have the same crystal structure, same cations, and similar lattice parameters, it is very challenging to image the interface. Herein, high‐resolution transmission electron microscopy, high‐angle annular dark‐field imaging, and energy‐dispersive X‐ray spectroscopy elemental mapping are combined to characterize the core@shell structure and identify the interface in the CdSe@CdS QDs with different CdS shell thicknesses. By examining changes in lattice spacing in an individual CdSe@CdS quantum dot, the atomic core@shell interface is identified. For thin‐shelled QDs, an ideal coherent interface forms between core and shell due to the small lattice mismatch, and the lattice spacing remains unchanged at the core and shell regions. For thick‐shelled QDs, the lattice spacing is different at the core and shell regions, while the heterostructured interface is still coherent and cannot be clearly imaged. As the shell thickness further increases, a sharp core@shell interface appears. The results define an approach to characterize the heterostructure of two materials with the same crystalline structure and cations.
A simple method is reported to identify the interface in individual CdSe@CdS QDs. For thin‐shelled QDs, an ideal coherent interface forms between core and shell, and the lattice spacing remains unchanged. For thick‐shelled QDs, the lattice spacing is different at the core and shell regions. As the shell thickness further increases, a sharp core@shell interface appears.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202102784</identifier><identifier>PMID: 34647434</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>CdSe@CdS core@shell quantum dots ; Chemistry ; Chemistry, Multidisciplinary ; Crystal structure ; Interfaces ; Materials Science ; Materials Science, Multidisciplinary ; microstructures ; Morphology ; Nanocrystals ; Nanoscience & Nanotechnology ; Optical properties ; Physical Sciences ; Quantum dots ; Science & Technology ; Science & Technology - Other Topics ; Shells ; Spectrum analysis ; Technology</subject><ispartof>Advanced science, 2021-11, Vol.8 (22), p.e2102784-n/a, Article 2102784</ispartof><rights>2021 The Authors. Advanced Science published by Wiley‐VCH GmbH</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>16</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000706874500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c5065-c3da26bfacb3a38c0920f7b3d1ab5543d2b48e8964f9f2b41f192854eba26e073</citedby><cites>FETCH-LOGICAL-c5065-c3da26bfacb3a38c0920f7b3d1ab5543d2b48e8964f9f2b41f192854eba26e073</cites><orcidid>0000-0001-8479-6955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596122/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596122/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,1418,2103,2115,11567,27929,27930,39263,45579,45580,46057,46481,53796,53798</link.rule.ids></links><search><creatorcontrib>Liu, Guiju</creatorcontrib><creatorcontrib>Liang, Wenshuang</creatorcontrib><creatorcontrib>Xue, Xuyan</creatorcontrib><creatorcontrib>Rosei, Federico</creatorcontrib><creatorcontrib>Wang, Yiqian</creatorcontrib><title>Atomic Identification of Interfaces in Individual Core@shell Quantum Dots</title><title>Advanced science</title><addtitle>ADV SCI</addtitle><description>CdSe@CdS Core@shell quantum dots (QDs) have been widely studied in recent years, due to their architecture which allows to tailor properties by controlling structure and composition. However, since CdSe and CdS have the same crystal structure, same cations, and similar lattice parameters, it is very challenging to image the interface. Herein, high‐resolution transmission electron microscopy, high‐angle annular dark‐field imaging, and energy‐dispersive X‐ray spectroscopy elemental mapping are combined to characterize the core@shell structure and identify the interface in the CdSe@CdS QDs with different CdS shell thicknesses. By examining changes in lattice spacing in an individual CdSe@CdS quantum dot, the atomic core@shell interface is identified. For thin‐shelled QDs, an ideal coherent interface forms between core and shell due to the small lattice mismatch, and the lattice spacing remains unchanged at the core and shell regions. For thick‐shelled QDs, the lattice spacing is different at the core and shell regions, while the heterostructured interface is still coherent and cannot be clearly imaged. As the shell thickness further increases, a sharp core@shell interface appears. The results define an approach to characterize the heterostructure of two materials with the same crystalline structure and cations.
A simple method is reported to identify the interface in individual CdSe@CdS QDs. For thin‐shelled QDs, an ideal coherent interface forms between core and shell, and the lattice spacing remains unchanged. For thick‐shelled QDs, the lattice spacing is different at the core and shell regions. As the shell thickness further increases, a sharp core@shell interface appears.</description><subject>CdSe@CdS core@shell quantum dots</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Crystal structure</subject><subject>Interfaces</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>microstructures</subject><subject>Morphology</subject><subject>Nanocrystals</subject><subject>Nanoscience & Nanotechnology</subject><subject>Optical properties</subject><subject>Physical Sciences</subject><subject>Quantum dots</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Shells</subject><subject>Spectrum analysis</subject><subject>Technology</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>HGBXW</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1rFDEYxgdRbKm9eh7wIsiu-Z7kIi5TWwcKIn5cQz7bLLNJTWa29L83210W60VPeZM8zy8v75OmeQ3BEgKA3iu7LUsEEASo4-RZc4qg4AvMCXn-R33SnJeyBgBAijsC-cvmBBNGOoLJaTOsprQJph2si1PwwagppNgm3w5xctkr40obYt3ZsA12VmPbp-w-lls3ju3XWcVp3rQXaSqvmhdejcWdH9az5sflp-_958X1l6uhX10vDAWMLgy2CjFdwRorzA0QCPhOYwuVppRgizThjgtGvPC1hh4KxClxutoc6PBZM-y5Nqm1vMtho_KDTCrIx4OUb6TKUzCjkxYLYhlWUCNBIIaCAc8A1o5UkIKksj7sWXez3jhr6gyyGp9An97EcCtv0lZyKhhEqALeHgA5_ZpdmeQmFFNHo6JLc5GIcgRrVnT31pu_pOs051hHVVWiE5xyyKpquVeZnErJzh-bgUDuQpe70OUx9Grge8O908kXE1w07miqqXeA8Y5QsPsAfZge8-3THKdqfff_1qomB3UY3cM_2pKri5_fMOAU_wauR82-</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Liu, Guiju</creator><creator>Liang, Wenshuang</creator><creator>Xue, Xuyan</creator><creator>Rosei, Federico</creator><creator>Wang, Yiqian</creator><general>Wiley</general><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8479-6955</orcidid></search><sort><creationdate>20211101</creationdate><title>Atomic Identification of Interfaces in Individual Core@shell Quantum Dots</title><author>Liu, Guiju ; Liang, Wenshuang ; Xue, Xuyan ; Rosei, Federico ; Wang, Yiqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5065-c3da26bfacb3a38c0920f7b3d1ab5543d2b48e8964f9f2b41f192854eba26e073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CdSe@CdS core@shell quantum dots</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Crystal structure</topic><topic>Interfaces</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>microstructures</topic><topic>Morphology</topic><topic>Nanocrystals</topic><topic>Nanoscience & Nanotechnology</topic><topic>Optical properties</topic><topic>Physical Sciences</topic><topic>Quantum dots</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Shells</topic><topic>Spectrum analysis</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Guiju</creatorcontrib><creatorcontrib>Liang, Wenshuang</creatorcontrib><creatorcontrib>Xue, Xuyan</creatorcontrib><creatorcontrib>Rosei, Federico</creatorcontrib><creatorcontrib>Wang, Yiqian</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Guiju</au><au>Liang, Wenshuang</au><au>Xue, Xuyan</au><au>Rosei, Federico</au><au>Wang, Yiqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic Identification of Interfaces in Individual Core@shell Quantum Dots</atitle><jtitle>Advanced science</jtitle><stitle>ADV SCI</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>8</volume><issue>22</issue><spage>e2102784</spage><epage>n/a</epage><pages>e2102784-n/a</pages><artnum>2102784</artnum><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>CdSe@CdS Core@shell quantum dots (QDs) have been widely studied in recent years, due to their architecture which allows to tailor properties by controlling structure and composition. However, since CdSe and CdS have the same crystal structure, same cations, and similar lattice parameters, it is very challenging to image the interface. Herein, high‐resolution transmission electron microscopy, high‐angle annular dark‐field imaging, and energy‐dispersive X‐ray spectroscopy elemental mapping are combined to characterize the core@shell structure and identify the interface in the CdSe@CdS QDs with different CdS shell thicknesses. By examining changes in lattice spacing in an individual CdSe@CdS quantum dot, the atomic core@shell interface is identified. For thin‐shelled QDs, an ideal coherent interface forms between core and shell due to the small lattice mismatch, and the lattice spacing remains unchanged at the core and shell regions. For thick‐shelled QDs, the lattice spacing is different at the core and shell regions, while the heterostructured interface is still coherent and cannot be clearly imaged. As the shell thickness further increases, a sharp core@shell interface appears. The results define an approach to characterize the heterostructure of two materials with the same crystalline structure and cations.
A simple method is reported to identify the interface in individual CdSe@CdS QDs. For thin‐shelled QDs, an ideal coherent interface forms between core and shell, and the lattice spacing remains unchanged. For thick‐shelled QDs, the lattice spacing is different at the core and shell regions. As the shell thickness further increases, a sharp core@shell interface appears.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><pmid>34647434</pmid><doi>10.1002/advs.202102784</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8479-6955</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2198-3844 |
ispartof | Advanced science, 2021-11, Vol.8 (22), p.e2102784-n/a, Article 2102784 |
issn | 2198-3844 2198-3844 |
language | eng |
recordid | cdi_crossref_primary_10_1002_advs_202102784 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Wiley Online Library All Journals; PubMed Central |
subjects | CdSe@CdS core@shell quantum dots Chemistry Chemistry, Multidisciplinary Crystal structure Interfaces Materials Science Materials Science, Multidisciplinary microstructures Morphology Nanocrystals Nanoscience & Nanotechnology Optical properties Physical Sciences Quantum dots Science & Technology Science & Technology - Other Topics Shells Spectrum analysis Technology |
title | Atomic Identification of Interfaces in Individual Core@shell Quantum Dots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T08%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20Identification%20of%20Interfaces%20in%20Individual%20Core@shell%20Quantum%20Dots&rft.jtitle=Advanced%20science&rft.au=Liu,%20Guiju&rft.date=2021-11-01&rft.volume=8&rft.issue=22&rft.spage=e2102784&rft.epage=n/a&rft.pages=e2102784-n/a&rft.artnum=2102784&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202102784&rft_dat=%3Cproquest_cross%3E2597985816%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2597985816&rft_id=info:pmid/34647434&rft_doaj_id=oai_doaj_org_article_d394d63a1b294131960f603be4e07a14&rfr_iscdi=true |