Linking Hydraulic Properties to Hemolytic Performance of Rotodynamic Blood Pumps
In rotodynamic blood pumps (RBPs) a substantial proportion of input energy is dissipated into the blood. This energy may propel damaging work on blood constituents. To date, the link between this hydraulic energy dissipation and respective hemolytic action in RBPs remains vastly unknown. In this stu...
Gespeichert in:
Veröffentlicht in: | Advanced theory and simulations 2022-09, Vol.5 (9), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Advanced theory and simulations |
container_volume | 5 |
creator | Escher, Andreas Hubmann, Emanuel Johannes Karner, Barbara Messner, Barbara Laufer, Günther Kertzscher, Ulrich Zimpfer, Daniel Granegger, Marcus |
description | In rotodynamic blood pumps (RBPs) a substantial proportion of input energy is dissipated into the blood. This energy may propel damaging work on blood constituents. To date, the link between this hydraulic energy dissipation and respective hemolytic action in RBPs remains vastly unknown. In this study, computational fluid dynamics is applied to compute the hydraulic energy dissipation at 9 operating conditions in two RBPs (HM3: HeartMate 3; HVAD: HeartWare Ventricular Assist Device). Respective interrelations with hemolytic pump performance are elucidated by comparing these computations with in silico predicted and in vitro measured hemolysis. Despite different pump geometries, hydraulic loss magnitudes, and distributions, global hydraulic energy dissipation shows strong correlation (r > 0.95) to in vitro hemolysis with scaling factors in the same order of magnitude for both devices (φHM3 = 0.599 (mL g) (J 100L)–1; φHVAD = 0.716 (mL g) (J 100L)–1). The analytical description of hydraulic energy dissipation reveals to be a function of shear stresses and exposure time, unmasking its analogy to the power‐law formulation of hemolysis. This hydraulics‐based analysis may denote a step ahead to relate turbomachinery to bioengineering and may provide mechanistic insights into the relation between RBP design, hydraulic properties, and hemolytic performance.
During the operation of rotodynamic blood pumps, a considerable extent of input energy is dissipated into the blood. In a combination of computational fluid dynamics and experimental hemolysis examination this hydraulic energy dissipation reveals to correlate well with respective in vitro hemolysis in two prominent pumps, while unmasking an analogy to the power‐law formulation of hemolysis. |
doi_str_mv | 10.1002/adts.202200117 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adts_202200117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADTS202200117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2597-c11f13327fbb745de094e948b1e2f9faf47002150ff0e38c8deaf5f11b0d920e3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsNRePe8fSJ3ZJKR7rPWjhYJF6zlssjMSTbJlN0Xy702oqDdPM7wzzzA8QlwjzBFA3RjbhbkCpQAQszMxUSnGEcQazv_0l2IWwjsMACaQAU7Eblu1H1X7Jte99eZYV6XceXcg31UUZOfkmhpX992Yk2fnG9OWJB3LZ9c527emGUa3tXNW7o7NIVyJCzZ1oNl3nYrXh_v9ah1tnx43q-U2KlWqs6hEZIxjlXFRZElqCXRCOlkUSIo1G06y8csUmIHiRbmwZDhlxAKsVkM0FfPT3dK7EDxxfvBVY3yfI-SjknxUkv8oGQB9Aj6rmvp_tvPl3f7ll_0CVq9mNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Linking Hydraulic Properties to Hemolytic Performance of Rotodynamic Blood Pumps</title><source>Access via Wiley Online Library</source><creator>Escher, Andreas ; Hubmann, Emanuel Johannes ; Karner, Barbara ; Messner, Barbara ; Laufer, Günther ; Kertzscher, Ulrich ; Zimpfer, Daniel ; Granegger, Marcus</creator><creatorcontrib>Escher, Andreas ; Hubmann, Emanuel Johannes ; Karner, Barbara ; Messner, Barbara ; Laufer, Günther ; Kertzscher, Ulrich ; Zimpfer, Daniel ; Granegger, Marcus</creatorcontrib><description>In rotodynamic blood pumps (RBPs) a substantial proportion of input energy is dissipated into the blood. This energy may propel damaging work on blood constituents. To date, the link between this hydraulic energy dissipation and respective hemolytic action in RBPs remains vastly unknown. In this study, computational fluid dynamics is applied to compute the hydraulic energy dissipation at 9 operating conditions in two RBPs (HM3: HeartMate 3; HVAD: HeartWare Ventricular Assist Device). Respective interrelations with hemolytic pump performance are elucidated by comparing these computations with in silico predicted and in vitro measured hemolysis. Despite different pump geometries, hydraulic loss magnitudes, and distributions, global hydraulic energy dissipation shows strong correlation (r > 0.95) to in vitro hemolysis with scaling factors in the same order of magnitude for both devices (φHM3 = 0.599 (mL g) (J 100L)–1; φHVAD = 0.716 (mL g) (J 100L)–1). The analytical description of hydraulic energy dissipation reveals to be a function of shear stresses and exposure time, unmasking its analogy to the power‐law formulation of hemolysis. This hydraulics‐based analysis may denote a step ahead to relate turbomachinery to bioengineering and may provide mechanistic insights into the relation between RBP design, hydraulic properties, and hemolytic performance.
During the operation of rotodynamic blood pumps, a considerable extent of input energy is dissipated into the blood. In a combination of computational fluid dynamics and experimental hemolysis examination this hydraulic energy dissipation reveals to correlate well with respective in vitro hemolysis in two prominent pumps, while unmasking an analogy to the power‐law formulation of hemolysis.</description><identifier>ISSN: 2513-0390</identifier><identifier>EISSN: 2513-0390</identifier><identifier>DOI: 10.1002/adts.202200117</identifier><language>eng</language><subject>blood trauma ; computational fluid dynamics ; hemolysis prediction ; hydraulic losses ; mechanical circulatory support ; power‐law ; rotodynamic blood pump</subject><ispartof>Advanced theory and simulations, 2022-09, Vol.5 (9), p.n/a</ispartof><rights>2022 The Authors. Advanced Theory and Simulations published by Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2597-c11f13327fbb745de094e948b1e2f9faf47002150ff0e38c8deaf5f11b0d920e3</citedby><cites>FETCH-LOGICAL-c2597-c11f13327fbb745de094e948b1e2f9faf47002150ff0e38c8deaf5f11b0d920e3</cites><orcidid>0000-0003-0325-5597 ; 0000-0002-1425-1236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadts.202200117$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadts.202200117$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids></links><search><creatorcontrib>Escher, Andreas</creatorcontrib><creatorcontrib>Hubmann, Emanuel Johannes</creatorcontrib><creatorcontrib>Karner, Barbara</creatorcontrib><creatorcontrib>Messner, Barbara</creatorcontrib><creatorcontrib>Laufer, Günther</creatorcontrib><creatorcontrib>Kertzscher, Ulrich</creatorcontrib><creatorcontrib>Zimpfer, Daniel</creatorcontrib><creatorcontrib>Granegger, Marcus</creatorcontrib><title>Linking Hydraulic Properties to Hemolytic Performance of Rotodynamic Blood Pumps</title><title>Advanced theory and simulations</title><description>In rotodynamic blood pumps (RBPs) a substantial proportion of input energy is dissipated into the blood. This energy may propel damaging work on blood constituents. To date, the link between this hydraulic energy dissipation and respective hemolytic action in RBPs remains vastly unknown. In this study, computational fluid dynamics is applied to compute the hydraulic energy dissipation at 9 operating conditions in two RBPs (HM3: HeartMate 3; HVAD: HeartWare Ventricular Assist Device). Respective interrelations with hemolytic pump performance are elucidated by comparing these computations with in silico predicted and in vitro measured hemolysis. Despite different pump geometries, hydraulic loss magnitudes, and distributions, global hydraulic energy dissipation shows strong correlation (r > 0.95) to in vitro hemolysis with scaling factors in the same order of magnitude for both devices (φHM3 = 0.599 (mL g) (J 100L)–1; φHVAD = 0.716 (mL g) (J 100L)–1). The analytical description of hydraulic energy dissipation reveals to be a function of shear stresses and exposure time, unmasking its analogy to the power‐law formulation of hemolysis. This hydraulics‐based analysis may denote a step ahead to relate turbomachinery to bioengineering and may provide mechanistic insights into the relation between RBP design, hydraulic properties, and hemolytic performance.
During the operation of rotodynamic blood pumps, a considerable extent of input energy is dissipated into the blood. In a combination of computational fluid dynamics and experimental hemolysis examination this hydraulic energy dissipation reveals to correlate well with respective in vitro hemolysis in two prominent pumps, while unmasking an analogy to the power‐law formulation of hemolysis.</description><subject>blood trauma</subject><subject>computational fluid dynamics</subject><subject>hemolysis prediction</subject><subject>hydraulic losses</subject><subject>mechanical circulatory support</subject><subject>power‐law</subject><subject>rotodynamic blood pump</subject><issn>2513-0390</issn><issn>2513-0390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkE1Lw0AQhhdRsNRePe8fSJ3ZJKR7rPWjhYJF6zlssjMSTbJlN0Xy702oqDdPM7wzzzA8QlwjzBFA3RjbhbkCpQAQszMxUSnGEcQazv_0l2IWwjsMACaQAU7Eblu1H1X7Jte99eZYV6XceXcg31UUZOfkmhpX992Yk2fnG9OWJB3LZ9c527emGUa3tXNW7o7NIVyJCzZ1oNl3nYrXh_v9ah1tnx43q-U2KlWqs6hEZIxjlXFRZElqCXRCOlkUSIo1G06y8csUmIHiRbmwZDhlxAKsVkM0FfPT3dK7EDxxfvBVY3yfI-SjknxUkv8oGQB9Aj6rmvp_tvPl3f7ll_0CVq9mNA</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Escher, Andreas</creator><creator>Hubmann, Emanuel Johannes</creator><creator>Karner, Barbara</creator><creator>Messner, Barbara</creator><creator>Laufer, Günther</creator><creator>Kertzscher, Ulrich</creator><creator>Zimpfer, Daniel</creator><creator>Granegger, Marcus</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0325-5597</orcidid><orcidid>https://orcid.org/0000-0002-1425-1236</orcidid></search><sort><creationdate>202209</creationdate><title>Linking Hydraulic Properties to Hemolytic Performance of Rotodynamic Blood Pumps</title><author>Escher, Andreas ; Hubmann, Emanuel Johannes ; Karner, Barbara ; Messner, Barbara ; Laufer, Günther ; Kertzscher, Ulrich ; Zimpfer, Daniel ; Granegger, Marcus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2597-c11f13327fbb745de094e948b1e2f9faf47002150ff0e38c8deaf5f11b0d920e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>blood trauma</topic><topic>computational fluid dynamics</topic><topic>hemolysis prediction</topic><topic>hydraulic losses</topic><topic>mechanical circulatory support</topic><topic>power‐law</topic><topic>rotodynamic blood pump</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Escher, Andreas</creatorcontrib><creatorcontrib>Hubmann, Emanuel Johannes</creatorcontrib><creatorcontrib>Karner, Barbara</creatorcontrib><creatorcontrib>Messner, Barbara</creatorcontrib><creatorcontrib>Laufer, Günther</creatorcontrib><creatorcontrib>Kertzscher, Ulrich</creatorcontrib><creatorcontrib>Zimpfer, Daniel</creatorcontrib><creatorcontrib>Granegger, Marcus</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><jtitle>Advanced theory and simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Escher, Andreas</au><au>Hubmann, Emanuel Johannes</au><au>Karner, Barbara</au><au>Messner, Barbara</au><au>Laufer, Günther</au><au>Kertzscher, Ulrich</au><au>Zimpfer, Daniel</au><au>Granegger, Marcus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking Hydraulic Properties to Hemolytic Performance of Rotodynamic Blood Pumps</atitle><jtitle>Advanced theory and simulations</jtitle><date>2022-09</date><risdate>2022</risdate><volume>5</volume><issue>9</issue><epage>n/a</epage><issn>2513-0390</issn><eissn>2513-0390</eissn><abstract>In rotodynamic blood pumps (RBPs) a substantial proportion of input energy is dissipated into the blood. This energy may propel damaging work on blood constituents. To date, the link between this hydraulic energy dissipation and respective hemolytic action in RBPs remains vastly unknown. In this study, computational fluid dynamics is applied to compute the hydraulic energy dissipation at 9 operating conditions in two RBPs (HM3: HeartMate 3; HVAD: HeartWare Ventricular Assist Device). Respective interrelations with hemolytic pump performance are elucidated by comparing these computations with in silico predicted and in vitro measured hemolysis. Despite different pump geometries, hydraulic loss magnitudes, and distributions, global hydraulic energy dissipation shows strong correlation (r > 0.95) to in vitro hemolysis with scaling factors in the same order of magnitude for both devices (φHM3 = 0.599 (mL g) (J 100L)–1; φHVAD = 0.716 (mL g) (J 100L)–1). The analytical description of hydraulic energy dissipation reveals to be a function of shear stresses and exposure time, unmasking its analogy to the power‐law formulation of hemolysis. This hydraulics‐based analysis may denote a step ahead to relate turbomachinery to bioengineering and may provide mechanistic insights into the relation between RBP design, hydraulic properties, and hemolytic performance.
During the operation of rotodynamic blood pumps, a considerable extent of input energy is dissipated into the blood. In a combination of computational fluid dynamics and experimental hemolysis examination this hydraulic energy dissipation reveals to correlate well with respective in vitro hemolysis in two prominent pumps, while unmasking an analogy to the power‐law formulation of hemolysis.</abstract><doi>10.1002/adts.202200117</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0325-5597</orcidid><orcidid>https://orcid.org/0000-0002-1425-1236</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2513-0390 |
ispartof | Advanced theory and simulations, 2022-09, Vol.5 (9), p.n/a |
issn | 2513-0390 2513-0390 |
language | eng |
recordid | cdi_crossref_primary_10_1002_adts_202200117 |
source | Access via Wiley Online Library |
subjects | blood trauma computational fluid dynamics hemolysis prediction hydraulic losses mechanical circulatory support power‐law rotodynamic blood pump |
title | Linking Hydraulic Properties to Hemolytic Performance of Rotodynamic Blood Pumps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T14%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20Hydraulic%20Properties%20to%20Hemolytic%20Performance%20of%20Rotodynamic%20Blood%20Pumps&rft.jtitle=Advanced%20theory%20and%20simulations&rft.au=Escher,%20Andreas&rft.date=2022-09&rft.volume=5&rft.issue=9&rft.epage=n/a&rft.issn=2513-0390&rft.eissn=2513-0390&rft_id=info:doi/10.1002/adts.202200117&rft_dat=%3Cwiley_cross%3EADTS202200117%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |