Linking Hydraulic Properties to Hemolytic Performance of Rotodynamic Blood Pumps

In rotodynamic blood pumps (RBPs) a substantial proportion of input energy is dissipated into the blood. This energy may propel damaging work on blood constituents. To date, the link between this hydraulic energy dissipation and respective hemolytic action in RBPs remains vastly unknown. In this stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced theory and simulations 2022-09, Vol.5 (9), p.n/a
Hauptverfasser: Escher, Andreas, Hubmann, Emanuel Johannes, Karner, Barbara, Messner, Barbara, Laufer, Günther, Kertzscher, Ulrich, Zimpfer, Daniel, Granegger, Marcus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Advanced theory and simulations
container_volume 5
creator Escher, Andreas
Hubmann, Emanuel Johannes
Karner, Barbara
Messner, Barbara
Laufer, Günther
Kertzscher, Ulrich
Zimpfer, Daniel
Granegger, Marcus
description In rotodynamic blood pumps (RBPs) a substantial proportion of input energy is dissipated into the blood. This energy may propel damaging work on blood constituents. To date, the link between this hydraulic energy dissipation and respective hemolytic action in RBPs remains vastly unknown. In this study, computational fluid dynamics is applied to compute the hydraulic energy dissipation at 9 operating conditions in two RBPs (HM3: HeartMate 3; HVAD: HeartWare Ventricular Assist Device). Respective interrelations with hemolytic pump performance are elucidated by comparing these computations with in silico predicted and in vitro measured hemolysis. Despite different pump geometries, hydraulic loss magnitudes, and distributions, global hydraulic energy dissipation shows strong correlation (r > 0.95) to in vitro hemolysis with scaling factors in the same order of magnitude for both devices (φHM3 = 0.599 (mL g) (J 100L)–1; φHVAD = 0.716 (mL g) (J 100L)–1). The analytical description of hydraulic energy dissipation reveals to be a function of shear stresses and exposure time, unmasking its analogy to the power‐law formulation of hemolysis. This hydraulics‐based analysis may denote a step ahead to relate turbomachinery to bioengineering and may provide mechanistic insights into the relation between RBP design, hydraulic properties, and hemolytic performance. During the operation of rotodynamic blood pumps, a considerable extent of input energy is dissipated into the blood. In a combination of computational fluid dynamics and experimental hemolysis examination this hydraulic energy dissipation reveals to correlate well with respective in vitro hemolysis in two prominent pumps, while unmasking an analogy to the power‐law formulation of hemolysis.
doi_str_mv 10.1002/adts.202200117
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adts_202200117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADTS202200117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2597-c11f13327fbb745de094e948b1e2f9faf47002150ff0e38c8deaf5f11b0d920e3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsNRePe8fSJ3ZJKR7rPWjhYJF6zlssjMSTbJlN0Xy702oqDdPM7wzzzA8QlwjzBFA3RjbhbkCpQAQszMxUSnGEcQazv_0l2IWwjsMACaQAU7Eblu1H1X7Jte99eZYV6XceXcg31UUZOfkmhpX992Yk2fnG9OWJB3LZ9c527emGUa3tXNW7o7NIVyJCzZ1oNl3nYrXh_v9ah1tnx43q-U2KlWqs6hEZIxjlXFRZElqCXRCOlkUSIo1G06y8csUmIHiRbmwZDhlxAKsVkM0FfPT3dK7EDxxfvBVY3yfI-SjknxUkv8oGQB9Aj6rmvp_tvPl3f7ll_0CVq9mNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Linking Hydraulic Properties to Hemolytic Performance of Rotodynamic Blood Pumps</title><source>Access via Wiley Online Library</source><creator>Escher, Andreas ; Hubmann, Emanuel Johannes ; Karner, Barbara ; Messner, Barbara ; Laufer, Günther ; Kertzscher, Ulrich ; Zimpfer, Daniel ; Granegger, Marcus</creator><creatorcontrib>Escher, Andreas ; Hubmann, Emanuel Johannes ; Karner, Barbara ; Messner, Barbara ; Laufer, Günther ; Kertzscher, Ulrich ; Zimpfer, Daniel ; Granegger, Marcus</creatorcontrib><description>In rotodynamic blood pumps (RBPs) a substantial proportion of input energy is dissipated into the blood. This energy may propel damaging work on blood constituents. To date, the link between this hydraulic energy dissipation and respective hemolytic action in RBPs remains vastly unknown. In this study, computational fluid dynamics is applied to compute the hydraulic energy dissipation at 9 operating conditions in two RBPs (HM3: HeartMate 3; HVAD: HeartWare Ventricular Assist Device). Respective interrelations with hemolytic pump performance are elucidated by comparing these computations with in silico predicted and in vitro measured hemolysis. Despite different pump geometries, hydraulic loss magnitudes, and distributions, global hydraulic energy dissipation shows strong correlation (r &gt; 0.95) to in vitro hemolysis with scaling factors in the same order of magnitude for both devices (φHM3 = 0.599 (mL g) (J 100L)–1; φHVAD = 0.716 (mL g) (J 100L)–1). The analytical description of hydraulic energy dissipation reveals to be a function of shear stresses and exposure time, unmasking its analogy to the power‐law formulation of hemolysis. This hydraulics‐based analysis may denote a step ahead to relate turbomachinery to bioengineering and may provide mechanistic insights into the relation between RBP design, hydraulic properties, and hemolytic performance. During the operation of rotodynamic blood pumps, a considerable extent of input energy is dissipated into the blood. In a combination of computational fluid dynamics and experimental hemolysis examination this hydraulic energy dissipation reveals to correlate well with respective in vitro hemolysis in two prominent pumps, while unmasking an analogy to the power‐law formulation of hemolysis.</description><identifier>ISSN: 2513-0390</identifier><identifier>EISSN: 2513-0390</identifier><identifier>DOI: 10.1002/adts.202200117</identifier><language>eng</language><subject>blood trauma ; computational fluid dynamics ; hemolysis prediction ; hydraulic losses ; mechanical circulatory support ; power‐law ; rotodynamic blood pump</subject><ispartof>Advanced theory and simulations, 2022-09, Vol.5 (9), p.n/a</ispartof><rights>2022 The Authors. Advanced Theory and Simulations published by Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2597-c11f13327fbb745de094e948b1e2f9faf47002150ff0e38c8deaf5f11b0d920e3</citedby><cites>FETCH-LOGICAL-c2597-c11f13327fbb745de094e948b1e2f9faf47002150ff0e38c8deaf5f11b0d920e3</cites><orcidid>0000-0003-0325-5597 ; 0000-0002-1425-1236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadts.202200117$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadts.202200117$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids></links><search><creatorcontrib>Escher, Andreas</creatorcontrib><creatorcontrib>Hubmann, Emanuel Johannes</creatorcontrib><creatorcontrib>Karner, Barbara</creatorcontrib><creatorcontrib>Messner, Barbara</creatorcontrib><creatorcontrib>Laufer, Günther</creatorcontrib><creatorcontrib>Kertzscher, Ulrich</creatorcontrib><creatorcontrib>Zimpfer, Daniel</creatorcontrib><creatorcontrib>Granegger, Marcus</creatorcontrib><title>Linking Hydraulic Properties to Hemolytic Performance of Rotodynamic Blood Pumps</title><title>Advanced theory and simulations</title><description>In rotodynamic blood pumps (RBPs) a substantial proportion of input energy is dissipated into the blood. This energy may propel damaging work on blood constituents. To date, the link between this hydraulic energy dissipation and respective hemolytic action in RBPs remains vastly unknown. In this study, computational fluid dynamics is applied to compute the hydraulic energy dissipation at 9 operating conditions in two RBPs (HM3: HeartMate 3; HVAD: HeartWare Ventricular Assist Device). Respective interrelations with hemolytic pump performance are elucidated by comparing these computations with in silico predicted and in vitro measured hemolysis. Despite different pump geometries, hydraulic loss magnitudes, and distributions, global hydraulic energy dissipation shows strong correlation (r &gt; 0.95) to in vitro hemolysis with scaling factors in the same order of magnitude for both devices (φHM3 = 0.599 (mL g) (J 100L)–1; φHVAD = 0.716 (mL g) (J 100L)–1). The analytical description of hydraulic energy dissipation reveals to be a function of shear stresses and exposure time, unmasking its analogy to the power‐law formulation of hemolysis. This hydraulics‐based analysis may denote a step ahead to relate turbomachinery to bioengineering and may provide mechanistic insights into the relation between RBP design, hydraulic properties, and hemolytic performance. During the operation of rotodynamic blood pumps, a considerable extent of input energy is dissipated into the blood. In a combination of computational fluid dynamics and experimental hemolysis examination this hydraulic energy dissipation reveals to correlate well with respective in vitro hemolysis in two prominent pumps, while unmasking an analogy to the power‐law formulation of hemolysis.</description><subject>blood trauma</subject><subject>computational fluid dynamics</subject><subject>hemolysis prediction</subject><subject>hydraulic losses</subject><subject>mechanical circulatory support</subject><subject>power‐law</subject><subject>rotodynamic blood pump</subject><issn>2513-0390</issn><issn>2513-0390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkE1Lw0AQhhdRsNRePe8fSJ3ZJKR7rPWjhYJF6zlssjMSTbJlN0Xy702oqDdPM7wzzzA8QlwjzBFA3RjbhbkCpQAQszMxUSnGEcQazv_0l2IWwjsMACaQAU7Eblu1H1X7Jte99eZYV6XceXcg31UUZOfkmhpX992Yk2fnG9OWJB3LZ9c527emGUa3tXNW7o7NIVyJCzZ1oNl3nYrXh_v9ah1tnx43q-U2KlWqs6hEZIxjlXFRZElqCXRCOlkUSIo1G06y8csUmIHiRbmwZDhlxAKsVkM0FfPT3dK7EDxxfvBVY3yfI-SjknxUkv8oGQB9Aj6rmvp_tvPl3f7ll_0CVq9mNA</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Escher, Andreas</creator><creator>Hubmann, Emanuel Johannes</creator><creator>Karner, Barbara</creator><creator>Messner, Barbara</creator><creator>Laufer, Günther</creator><creator>Kertzscher, Ulrich</creator><creator>Zimpfer, Daniel</creator><creator>Granegger, Marcus</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0325-5597</orcidid><orcidid>https://orcid.org/0000-0002-1425-1236</orcidid></search><sort><creationdate>202209</creationdate><title>Linking Hydraulic Properties to Hemolytic Performance of Rotodynamic Blood Pumps</title><author>Escher, Andreas ; Hubmann, Emanuel Johannes ; Karner, Barbara ; Messner, Barbara ; Laufer, Günther ; Kertzscher, Ulrich ; Zimpfer, Daniel ; Granegger, Marcus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2597-c11f13327fbb745de094e948b1e2f9faf47002150ff0e38c8deaf5f11b0d920e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>blood trauma</topic><topic>computational fluid dynamics</topic><topic>hemolysis prediction</topic><topic>hydraulic losses</topic><topic>mechanical circulatory support</topic><topic>power‐law</topic><topic>rotodynamic blood pump</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Escher, Andreas</creatorcontrib><creatorcontrib>Hubmann, Emanuel Johannes</creatorcontrib><creatorcontrib>Karner, Barbara</creatorcontrib><creatorcontrib>Messner, Barbara</creatorcontrib><creatorcontrib>Laufer, Günther</creatorcontrib><creatorcontrib>Kertzscher, Ulrich</creatorcontrib><creatorcontrib>Zimpfer, Daniel</creatorcontrib><creatorcontrib>Granegger, Marcus</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><jtitle>Advanced theory and simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Escher, Andreas</au><au>Hubmann, Emanuel Johannes</au><au>Karner, Barbara</au><au>Messner, Barbara</au><au>Laufer, Günther</au><au>Kertzscher, Ulrich</au><au>Zimpfer, Daniel</au><au>Granegger, Marcus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking Hydraulic Properties to Hemolytic Performance of Rotodynamic Blood Pumps</atitle><jtitle>Advanced theory and simulations</jtitle><date>2022-09</date><risdate>2022</risdate><volume>5</volume><issue>9</issue><epage>n/a</epage><issn>2513-0390</issn><eissn>2513-0390</eissn><abstract>In rotodynamic blood pumps (RBPs) a substantial proportion of input energy is dissipated into the blood. This energy may propel damaging work on blood constituents. To date, the link between this hydraulic energy dissipation and respective hemolytic action in RBPs remains vastly unknown. In this study, computational fluid dynamics is applied to compute the hydraulic energy dissipation at 9 operating conditions in two RBPs (HM3: HeartMate 3; HVAD: HeartWare Ventricular Assist Device). Respective interrelations with hemolytic pump performance are elucidated by comparing these computations with in silico predicted and in vitro measured hemolysis. Despite different pump geometries, hydraulic loss magnitudes, and distributions, global hydraulic energy dissipation shows strong correlation (r &gt; 0.95) to in vitro hemolysis with scaling factors in the same order of magnitude for both devices (φHM3 = 0.599 (mL g) (J 100L)–1; φHVAD = 0.716 (mL g) (J 100L)–1). The analytical description of hydraulic energy dissipation reveals to be a function of shear stresses and exposure time, unmasking its analogy to the power‐law formulation of hemolysis. This hydraulics‐based analysis may denote a step ahead to relate turbomachinery to bioengineering and may provide mechanistic insights into the relation between RBP design, hydraulic properties, and hemolytic performance. During the operation of rotodynamic blood pumps, a considerable extent of input energy is dissipated into the blood. In a combination of computational fluid dynamics and experimental hemolysis examination this hydraulic energy dissipation reveals to correlate well with respective in vitro hemolysis in two prominent pumps, while unmasking an analogy to the power‐law formulation of hemolysis.</abstract><doi>10.1002/adts.202200117</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0325-5597</orcidid><orcidid>https://orcid.org/0000-0002-1425-1236</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2513-0390
ispartof Advanced theory and simulations, 2022-09, Vol.5 (9), p.n/a
issn 2513-0390
2513-0390
language eng
recordid cdi_crossref_primary_10_1002_adts_202200117
source Access via Wiley Online Library
subjects blood trauma
computational fluid dynamics
hemolysis prediction
hydraulic losses
mechanical circulatory support
power‐law
rotodynamic blood pump
title Linking Hydraulic Properties to Hemolytic Performance of Rotodynamic Blood Pumps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T14%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20Hydraulic%20Properties%20to%20Hemolytic%20Performance%20of%20Rotodynamic%20Blood%20Pumps&rft.jtitle=Advanced%20theory%20and%20simulations&rft.au=Escher,%20Andreas&rft.date=2022-09&rft.volume=5&rft.issue=9&rft.epage=n/a&rft.issn=2513-0390&rft.eissn=2513-0390&rft_id=info:doi/10.1002/adts.202200117&rft_dat=%3Cwiley_cross%3EADTS202200117%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true