Harnessing CURATE.AI for N‐of‐1 Optimization Analysis of Combination Therapy in Hypertension Patients: A Retrospective Case Series

Hypertension is a global public health challenge that imposes a significant burden on patients and healthcare systems. Conventional treatment involves dose escalation of an antihypertensive drug, and if the desired response is not achieved, patients are prescribed another drug, often in combination...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced therapeutics 2021-10, Vol.4 (10), p.n/a
Hauptverfasser: Truong, Anh T. L., Tan, Lester W. J., Chew, Kimberly A., Villaraza, Steven, Siongco, Paula, Blasiak, Agata, Chen, Christopher, Ho, Dean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page
container_title Advanced therapeutics
container_volume 4
creator Truong, Anh T. L.
Tan, Lester W. J.
Chew, Kimberly A.
Villaraza, Steven
Siongco, Paula
Blasiak, Agata
Chen, Christopher
Ho, Dean
description Hypertension is a global public health challenge that imposes a significant burden on patients and healthcare systems. Conventional treatment involves dose escalation of an antihypertensive drug, and if the desired response is not achieved, patients are prescribed another drug, often in combination with other therapies. Importantly, drug synergy is dose‐, time‐ and patient‐dependent. Coupled with the challenges of intra‐ and inter‐individual variability, standard care can lead to sub‐optimal outcomes, additional visits, and adherence issues. Furthermore, these factors can cause the additional complication of patients being misperceived as refractory to regimens that are sub‐optimally administered. A scalable strategy that can longitudinally optimize patient response would be a powerful advance for chronic disease management. This four‐patient case series reports the application of CURATE.AI as a mechanism‐independent and disease‐agnostic platform for a retrospective N‐of‐1 (personalized) dose optimization using each patient's own data, including drug doses and corresponding changes in blood pressures. This approach may enable the rapid prediction of treatment response and the identification of optimal doses that may yield improved outcomes. CURATE.AI can be implemented in clinical workflows without creating additional burden of extensive data collection. The findings from this study support the prospective validation of CURATE.AI to optimize hypertension management. This study demonstrates the application of CURATE.AI as a clinical decision support tool for retrospective N‐of‐1 dosing optimization for four elderly hypertensive patients. CURATE.AI uses each patient's own data of antihypertensive drug doses and corresponding blood pressure changes to rapidly predict drug responses and identify optimal doses that potentially yield favorable outcomes over the standardofcare approach.
doi_str_mv 10.1002/adtp.202100091
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adtp_202100091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADTP202100091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2891-a5ffced2784ed0da9f1857f995eda23892a7611e13f1a57c9c03075b567568463</originalsourceid><addsrcrecordid>eNqFUD1PwzAUtBBIVKUrs_9Agu3UccwWhUIrVbQq6Ry5yTMYtU5kR6B0YmLmN_JLSFUEbCzv497d6ekQuqQkpISwK1W1TcgI6xci6QkasCiOg0gm4vTPfI5G3j_3FEZoJDgfoPepcha8N_YRZ-tVmk_CdIZ17fD959tHrftC8aJpzc7sVWtqi1Ortp03HtcaZ_VuY-wRz5_AqabDxuJp14BrwfoDvuzPYFt_jVO8gtbVvoGyNS-AM-UBP4Az4C_QmVZbD6PvPkTr20meTYP54m6WpfOgZImkgeJal1AxkYyhIpWSmiZcaCk5VIpFiWRKxJQCjTRVXJSyJBERfMNjweNkHEdDFB59y_4P70AXjTM75bqCkuIQZHEIsvgJshfIo-DVbKH7h12kN_nyV_sFsDV6Jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Harnessing CURATE.AI for N‐of‐1 Optimization Analysis of Combination Therapy in Hypertension Patients: A Retrospective Case Series</title><source>Wiley Online Library All Journals</source><creator>Truong, Anh T. L. ; Tan, Lester W. J. ; Chew, Kimberly A. ; Villaraza, Steven ; Siongco, Paula ; Blasiak, Agata ; Chen, Christopher ; Ho, Dean</creator><creatorcontrib>Truong, Anh T. L. ; Tan, Lester W. J. ; Chew, Kimberly A. ; Villaraza, Steven ; Siongco, Paula ; Blasiak, Agata ; Chen, Christopher ; Ho, Dean</creatorcontrib><description>Hypertension is a global public health challenge that imposes a significant burden on patients and healthcare systems. Conventional treatment involves dose escalation of an antihypertensive drug, and if the desired response is not achieved, patients are prescribed another drug, often in combination with other therapies. Importantly, drug synergy is dose‐, time‐ and patient‐dependent. Coupled with the challenges of intra‐ and inter‐individual variability, standard care can lead to sub‐optimal outcomes, additional visits, and adherence issues. Furthermore, these factors can cause the additional complication of patients being misperceived as refractory to regimens that are sub‐optimally administered. A scalable strategy that can longitudinally optimize patient response would be a powerful advance for chronic disease management. This four‐patient case series reports the application of CURATE.AI as a mechanism‐independent and disease‐agnostic platform for a retrospective N‐of‐1 (personalized) dose optimization using each patient's own data, including drug doses and corresponding changes in blood pressures. This approach may enable the rapid prediction of treatment response and the identification of optimal doses that may yield improved outcomes. CURATE.AI can be implemented in clinical workflows without creating additional burden of extensive data collection. The findings from this study support the prospective validation of CURATE.AI to optimize hypertension management. This study demonstrates the application of CURATE.AI as a clinical decision support tool for retrospective N‐of‐1 dosing optimization for four elderly hypertensive patients. CURATE.AI uses each patient's own data of antihypertensive drug doses and corresponding blood pressure changes to rapidly predict drug responses and identify optimal doses that potentially yield favorable outcomes over the standardofcare approach.</description><identifier>ISSN: 2366-3987</identifier><identifier>EISSN: 2366-3987</identifier><identifier>DOI: 10.1002/adtp.202100091</identifier><language>eng</language><subject>artificial intelligence ; CURATE.AI ; dosing optimization ; hypertension ; personalized dosing</subject><ispartof>Advanced therapeutics, 2021-10, Vol.4 (10), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2891-a5ffced2784ed0da9f1857f995eda23892a7611e13f1a57c9c03075b567568463</citedby><cites>FETCH-LOGICAL-c2891-a5ffced2784ed0da9f1857f995eda23892a7611e13f1a57c9c03075b567568463</cites><orcidid>0000-0003-0323-4964 ; 0000-0003-1551-4437 ; 0000-0003-0727-7611 ; 0000-0002-7337-296X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadtp.202100091$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadtp.202100091$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Truong, Anh T. L.</creatorcontrib><creatorcontrib>Tan, Lester W. J.</creatorcontrib><creatorcontrib>Chew, Kimberly A.</creatorcontrib><creatorcontrib>Villaraza, Steven</creatorcontrib><creatorcontrib>Siongco, Paula</creatorcontrib><creatorcontrib>Blasiak, Agata</creatorcontrib><creatorcontrib>Chen, Christopher</creatorcontrib><creatorcontrib>Ho, Dean</creatorcontrib><title>Harnessing CURATE.AI for N‐of‐1 Optimization Analysis of Combination Therapy in Hypertension Patients: A Retrospective Case Series</title><title>Advanced therapeutics</title><description>Hypertension is a global public health challenge that imposes a significant burden on patients and healthcare systems. Conventional treatment involves dose escalation of an antihypertensive drug, and if the desired response is not achieved, patients are prescribed another drug, often in combination with other therapies. Importantly, drug synergy is dose‐, time‐ and patient‐dependent. Coupled with the challenges of intra‐ and inter‐individual variability, standard care can lead to sub‐optimal outcomes, additional visits, and adherence issues. Furthermore, these factors can cause the additional complication of patients being misperceived as refractory to regimens that are sub‐optimally administered. A scalable strategy that can longitudinally optimize patient response would be a powerful advance for chronic disease management. This four‐patient case series reports the application of CURATE.AI as a mechanism‐independent and disease‐agnostic platform for a retrospective N‐of‐1 (personalized) dose optimization using each patient's own data, including drug doses and corresponding changes in blood pressures. This approach may enable the rapid prediction of treatment response and the identification of optimal doses that may yield improved outcomes. CURATE.AI can be implemented in clinical workflows without creating additional burden of extensive data collection. The findings from this study support the prospective validation of CURATE.AI to optimize hypertension management. This study demonstrates the application of CURATE.AI as a clinical decision support tool for retrospective N‐of‐1 dosing optimization for four elderly hypertensive patients. CURATE.AI uses each patient's own data of antihypertensive drug doses and corresponding blood pressure changes to rapidly predict drug responses and identify optimal doses that potentially yield favorable outcomes over the standardofcare approach.</description><subject>artificial intelligence</subject><subject>CURATE.AI</subject><subject>dosing optimization</subject><subject>hypertension</subject><subject>personalized dosing</subject><issn>2366-3987</issn><issn>2366-3987</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUD1PwzAUtBBIVKUrs_9Agu3UccwWhUIrVbQq6Ry5yTMYtU5kR6B0YmLmN_JLSFUEbCzv497d6ekQuqQkpISwK1W1TcgI6xci6QkasCiOg0gm4vTPfI5G3j_3FEZoJDgfoPepcha8N_YRZ-tVmk_CdIZ17fD959tHrftC8aJpzc7sVWtqi1Ortp03HtcaZ_VuY-wRz5_AqabDxuJp14BrwfoDvuzPYFt_jVO8gtbVvoGyNS-AM-UBP4Az4C_QmVZbD6PvPkTr20meTYP54m6WpfOgZImkgeJal1AxkYyhIpWSmiZcaCk5VIpFiWRKxJQCjTRVXJSyJBERfMNjweNkHEdDFB59y_4P70AXjTM75bqCkuIQZHEIsvgJshfIo-DVbKH7h12kN_nyV_sFsDV6Jg</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Truong, Anh T. L.</creator><creator>Tan, Lester W. J.</creator><creator>Chew, Kimberly A.</creator><creator>Villaraza, Steven</creator><creator>Siongco, Paula</creator><creator>Blasiak, Agata</creator><creator>Chen, Christopher</creator><creator>Ho, Dean</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0323-4964</orcidid><orcidid>https://orcid.org/0000-0003-1551-4437</orcidid><orcidid>https://orcid.org/0000-0003-0727-7611</orcidid><orcidid>https://orcid.org/0000-0002-7337-296X</orcidid></search><sort><creationdate>202110</creationdate><title>Harnessing CURATE.AI for N‐of‐1 Optimization Analysis of Combination Therapy in Hypertension Patients: A Retrospective Case Series</title><author>Truong, Anh T. L. ; Tan, Lester W. J. ; Chew, Kimberly A. ; Villaraza, Steven ; Siongco, Paula ; Blasiak, Agata ; Chen, Christopher ; Ho, Dean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2891-a5ffced2784ed0da9f1857f995eda23892a7611e13f1a57c9c03075b567568463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>artificial intelligence</topic><topic>CURATE.AI</topic><topic>dosing optimization</topic><topic>hypertension</topic><topic>personalized dosing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Truong, Anh T. L.</creatorcontrib><creatorcontrib>Tan, Lester W. J.</creatorcontrib><creatorcontrib>Chew, Kimberly A.</creatorcontrib><creatorcontrib>Villaraza, Steven</creatorcontrib><creatorcontrib>Siongco, Paula</creatorcontrib><creatorcontrib>Blasiak, Agata</creatorcontrib><creatorcontrib>Chen, Christopher</creatorcontrib><creatorcontrib>Ho, Dean</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Truong, Anh T. L.</au><au>Tan, Lester W. J.</au><au>Chew, Kimberly A.</au><au>Villaraza, Steven</au><au>Siongco, Paula</au><au>Blasiak, Agata</au><au>Chen, Christopher</au><au>Ho, Dean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing CURATE.AI for N‐of‐1 Optimization Analysis of Combination Therapy in Hypertension Patients: A Retrospective Case Series</atitle><jtitle>Advanced therapeutics</jtitle><date>2021-10</date><risdate>2021</risdate><volume>4</volume><issue>10</issue><epage>n/a</epage><issn>2366-3987</issn><eissn>2366-3987</eissn><abstract>Hypertension is a global public health challenge that imposes a significant burden on patients and healthcare systems. Conventional treatment involves dose escalation of an antihypertensive drug, and if the desired response is not achieved, patients are prescribed another drug, often in combination with other therapies. Importantly, drug synergy is dose‐, time‐ and patient‐dependent. Coupled with the challenges of intra‐ and inter‐individual variability, standard care can lead to sub‐optimal outcomes, additional visits, and adherence issues. Furthermore, these factors can cause the additional complication of patients being misperceived as refractory to regimens that are sub‐optimally administered. A scalable strategy that can longitudinally optimize patient response would be a powerful advance for chronic disease management. This four‐patient case series reports the application of CURATE.AI as a mechanism‐independent and disease‐agnostic platform for a retrospective N‐of‐1 (personalized) dose optimization using each patient's own data, including drug doses and corresponding changes in blood pressures. This approach may enable the rapid prediction of treatment response and the identification of optimal doses that may yield improved outcomes. CURATE.AI can be implemented in clinical workflows without creating additional burden of extensive data collection. The findings from this study support the prospective validation of CURATE.AI to optimize hypertension management. This study demonstrates the application of CURATE.AI as a clinical decision support tool for retrospective N‐of‐1 dosing optimization for four elderly hypertensive patients. CURATE.AI uses each patient's own data of antihypertensive drug doses and corresponding blood pressure changes to rapidly predict drug responses and identify optimal doses that potentially yield favorable outcomes over the standardofcare approach.</abstract><doi>10.1002/adtp.202100091</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0323-4964</orcidid><orcidid>https://orcid.org/0000-0003-1551-4437</orcidid><orcidid>https://orcid.org/0000-0003-0727-7611</orcidid><orcidid>https://orcid.org/0000-0002-7337-296X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2366-3987
ispartof Advanced therapeutics, 2021-10, Vol.4 (10), p.n/a
issn 2366-3987
2366-3987
language eng
recordid cdi_crossref_primary_10_1002_adtp_202100091
source Wiley Online Library All Journals
subjects artificial intelligence
CURATE.AI
dosing optimization
hypertension
personalized dosing
title Harnessing CURATE.AI for N‐of‐1 Optimization Analysis of Combination Therapy in Hypertension Patients: A Retrospective Case Series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A37%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20CURATE.AI%20for%20N%E2%80%90of%E2%80%901%20Optimization%20Analysis%20of%20Combination%20Therapy%20in%20Hypertension%20Patients:%20A%20Retrospective%20Case%20Series&rft.jtitle=Advanced%20therapeutics&rft.au=Truong,%20Anh%20T.%20L.&rft.date=2021-10&rft.volume=4&rft.issue=10&rft.epage=n/a&rft.issn=2366-3987&rft.eissn=2366-3987&rft_id=info:doi/10.1002/adtp.202100091&rft_dat=%3Cwiley_cross%3EADTP202100091%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true