Free‐Standing, Multifunctional Thermoelectric and Acoustic Absorbing Nanocomposite Foams

Thermoelectric materials are potential energy harvesting technologies that enable direct, clean conversion between thermal and electrical energy. The efficacy of thermoelectric energy conversion is influenced by the electrical conductivity, thermal conductivity, and Seebeck coefficient. Flexibility,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced sustainable systems (Online) 2025-01, Vol.9 (1), p.n/a
Hauptverfasser: Liu, Rui Yang, Sun, Yu‐Chen, Liu, Szu‐Ling, Fang, Weiqing, Li, Terek, Martinez‐Rubi, Yadienka, Jakubinek, Michael, Ashrafi, Behnam, Kingston, Christopher, Naguib, Hani E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Advanced sustainable systems (Online)
container_volume 9
creator Liu, Rui Yang
Sun, Yu‐Chen
Liu, Szu‐Ling
Fang, Weiqing
Li, Terek
Martinez‐Rubi, Yadienka
Jakubinek, Michael
Ashrafi, Behnam
Kingston, Christopher
Naguib, Hani E.
description Thermoelectric materials are potential energy harvesting technologies that enable direct, clean conversion between thermal and electrical energy. The efficacy of thermoelectric energy conversion is influenced by the electrical conductivity, thermal conductivity, and Seebeck coefficient. Flexibility, manufacturability, and cost‐effectiveness are also important factors. Polymeric nanocomposites offer advantages in these respects. However, the development of conductive‐polymer thermoelectric materials is limited to an in‐plane architecture, which does not resemble common real‐world scenarios. Moreover, existing works have low thermoelectric properties or rely on additives for performance improvement. In this work, a free‐standing thermoelectric nanocomposite foam is fabricated via the integration of thermally activated microspheres. Due to the microstructure, a thermal conductivity as low as 0.03 W m−1 K−1 is achieved, which is lower than reported for aerogels fabricated via freeze‐drying methods. Additionally, the nanocomposite foam can reach a maximum electrical conductivity of 1.13 S cm−1, power factor of 0.12 µW m−1 K−2, and thermoelectric figure of merit of 3.0 × 10−4. The study also evaluated the compressive stiffness and demonstrated the potential for sound absorption. With the unique combination of the thermoelectric, sound absorption, and mechanical behavior, these nanocomposite foams would offer versatile solutions to address the next generation energy harvesting and acoustic absorption applications. A free‐standing thermoelectric (TE) nanocomposite foam is created by utilizing thermally expandable microspheres in combination with carbon nanotube (CNT) and thermoplastic polyurethane (TPU). The polymer co‐precipitation process successfully integrated the microspheres with the nanofillers, forming a stable conductive network. The nanocomposite foam exhibits a low thermal conductivity between 0.03 to 0.12 W m⁻¹ K⁻¹, similar to aerogels. The nanocomposite foam also achieved a performance of figure of merit (zT) = 3.0 × 10⁻⁴ and power factor (PF) = 0.12 µW m⁻¹ K⁻2.
doi_str_mv 10.1002/adsu.202400490
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adsu_202400490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADSU202400490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2140-b02670b8e3da40d568863c5cd5eaa07f97d01dc46fd929a8d7be47e71b1b9e293</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EElXpypwHIOHGcex4jAoFpAJD24Ul8l_AKIkrOxHqxiPwjDwJqYqAjemeK53vDB9C5ykkKQC-FDoMCQZMAAiHIzTBGaUxIwU9_pNP0SyEVwDIMAbIswl6WnhjPt8_Vr3otO2eL6L7oeltPXSqt64TTbR-Mb51pjGq91ZFYy0qlRtCPz6lDM7LEYseROeUa7cu2N5ECyfacIZOatEEM_u-U7RZXK_nt_Hy8eZuXi5jhVMCsQRMGcjCZFoQ0DktCpqpXOncCAGs5kxDqhWhteaYi0IzaQgzLJWp5AbzbIqSw67yLgRv6mrrbSv8rkqh2sup9nKqHzkjwA_Am23M7p92VV6tNr_sF8W1a28</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Free‐Standing, Multifunctional Thermoelectric and Acoustic Absorbing Nanocomposite Foams</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Rui Yang ; Sun, Yu‐Chen ; Liu, Szu‐Ling ; Fang, Weiqing ; Li, Terek ; Martinez‐Rubi, Yadienka ; Jakubinek, Michael ; Ashrafi, Behnam ; Kingston, Christopher ; Naguib, Hani E.</creator><creatorcontrib>Liu, Rui Yang ; Sun, Yu‐Chen ; Liu, Szu‐Ling ; Fang, Weiqing ; Li, Terek ; Martinez‐Rubi, Yadienka ; Jakubinek, Michael ; Ashrafi, Behnam ; Kingston, Christopher ; Naguib, Hani E.</creatorcontrib><description>Thermoelectric materials are potential energy harvesting technologies that enable direct, clean conversion between thermal and electrical energy. The efficacy of thermoelectric energy conversion is influenced by the electrical conductivity, thermal conductivity, and Seebeck coefficient. Flexibility, manufacturability, and cost‐effectiveness are also important factors. Polymeric nanocomposites offer advantages in these respects. However, the development of conductive‐polymer thermoelectric materials is limited to an in‐plane architecture, which does not resemble common real‐world scenarios. Moreover, existing works have low thermoelectric properties or rely on additives for performance improvement. In this work, a free‐standing thermoelectric nanocomposite foam is fabricated via the integration of thermally activated microspheres. Due to the microstructure, a thermal conductivity as low as 0.03 W m−1 K−1 is achieved, which is lower than reported for aerogels fabricated via freeze‐drying methods. Additionally, the nanocomposite foam can reach a maximum electrical conductivity of 1.13 S cm−1, power factor of 0.12 µW m−1 K−2, and thermoelectric figure of merit of 3.0 × 10−4. The study also evaluated the compressive stiffness and demonstrated the potential for sound absorption. With the unique combination of the thermoelectric, sound absorption, and mechanical behavior, these nanocomposite foams would offer versatile solutions to address the next generation energy harvesting and acoustic absorption applications. A free‐standing thermoelectric (TE) nanocomposite foam is created by utilizing thermally expandable microspheres in combination with carbon nanotube (CNT) and thermoplastic polyurethane (TPU). The polymer co‐precipitation process successfully integrated the microspheres with the nanofillers, forming a stable conductive network. The nanocomposite foam exhibits a low thermal conductivity between 0.03 to 0.12 W m⁻¹ K⁻¹, similar to aerogels. The nanocomposite foam also achieved a performance of figure of merit (zT) = 3.0 × 10⁻⁴ and power factor (PF) = 0.12 µW m⁻¹ K⁻2.</description><identifier>ISSN: 2366-7486</identifier><identifier>EISSN: 2366-7486</identifier><identifier>DOI: 10.1002/adsu.202400490</identifier><language>eng</language><subject>acoustic absorption ; multi‐walled carbon nanotubes ; single walled carbon nanotubes ; thermally activated microspheres ; thermometric nanocomposite foam</subject><ispartof>Advanced sustainable systems (Online), 2025-01, Vol.9 (1), p.n/a</ispartof><rights>2024 The Author(s). Advanced Sustainable Systems published by Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2140-b02670b8e3da40d568863c5cd5eaa07f97d01dc46fd929a8d7be47e71b1b9e293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadsu.202400490$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadsu.202400490$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Liu, Rui Yang</creatorcontrib><creatorcontrib>Sun, Yu‐Chen</creatorcontrib><creatorcontrib>Liu, Szu‐Ling</creatorcontrib><creatorcontrib>Fang, Weiqing</creatorcontrib><creatorcontrib>Li, Terek</creatorcontrib><creatorcontrib>Martinez‐Rubi, Yadienka</creatorcontrib><creatorcontrib>Jakubinek, Michael</creatorcontrib><creatorcontrib>Ashrafi, Behnam</creatorcontrib><creatorcontrib>Kingston, Christopher</creatorcontrib><creatorcontrib>Naguib, Hani E.</creatorcontrib><title>Free‐Standing, Multifunctional Thermoelectric and Acoustic Absorbing Nanocomposite Foams</title><title>Advanced sustainable systems (Online)</title><description>Thermoelectric materials are potential energy harvesting technologies that enable direct, clean conversion between thermal and electrical energy. The efficacy of thermoelectric energy conversion is influenced by the electrical conductivity, thermal conductivity, and Seebeck coefficient. Flexibility, manufacturability, and cost‐effectiveness are also important factors. Polymeric nanocomposites offer advantages in these respects. However, the development of conductive‐polymer thermoelectric materials is limited to an in‐plane architecture, which does not resemble common real‐world scenarios. Moreover, existing works have low thermoelectric properties or rely on additives for performance improvement. In this work, a free‐standing thermoelectric nanocomposite foam is fabricated via the integration of thermally activated microspheres. Due to the microstructure, a thermal conductivity as low as 0.03 W m−1 K−1 is achieved, which is lower than reported for aerogels fabricated via freeze‐drying methods. Additionally, the nanocomposite foam can reach a maximum electrical conductivity of 1.13 S cm−1, power factor of 0.12 µW m−1 K−2, and thermoelectric figure of merit of 3.0 × 10−4. The study also evaluated the compressive stiffness and demonstrated the potential for sound absorption. With the unique combination of the thermoelectric, sound absorption, and mechanical behavior, these nanocomposite foams would offer versatile solutions to address the next generation energy harvesting and acoustic absorption applications. A free‐standing thermoelectric (TE) nanocomposite foam is created by utilizing thermally expandable microspheres in combination with carbon nanotube (CNT) and thermoplastic polyurethane (TPU). The polymer co‐precipitation process successfully integrated the microspheres with the nanofillers, forming a stable conductive network. The nanocomposite foam exhibits a low thermal conductivity between 0.03 to 0.12 W m⁻¹ K⁻¹, similar to aerogels. The nanocomposite foam also achieved a performance of figure of merit (zT) = 3.0 × 10⁻⁴ and power factor (PF) = 0.12 µW m⁻¹ K⁻2.</description><subject>acoustic absorption</subject><subject>multi‐walled carbon nanotubes</subject><subject>single walled carbon nanotubes</subject><subject>thermally activated microspheres</subject><subject>thermometric nanocomposite foam</subject><issn>2366-7486</issn><issn>2366-7486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkL1OwzAUhS0EElXpypwHIOHGcex4jAoFpAJD24Ul8l_AKIkrOxHqxiPwjDwJqYqAjemeK53vDB9C5ykkKQC-FDoMCQZMAAiHIzTBGaUxIwU9_pNP0SyEVwDIMAbIswl6WnhjPt8_Vr3otO2eL6L7oeltPXSqt64TTbR-Mb51pjGq91ZFYy0qlRtCPz6lDM7LEYseROeUa7cu2N5ECyfacIZOatEEM_u-U7RZXK_nt_Hy8eZuXi5jhVMCsQRMGcjCZFoQ0DktCpqpXOncCAGs5kxDqhWhteaYi0IzaQgzLJWp5AbzbIqSw67yLgRv6mrrbSv8rkqh2sup9nKqHzkjwA_Am23M7p92VV6tNr_sF8W1a28</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Liu, Rui Yang</creator><creator>Sun, Yu‐Chen</creator><creator>Liu, Szu‐Ling</creator><creator>Fang, Weiqing</creator><creator>Li, Terek</creator><creator>Martinez‐Rubi, Yadienka</creator><creator>Jakubinek, Michael</creator><creator>Ashrafi, Behnam</creator><creator>Kingston, Christopher</creator><creator>Naguib, Hani E.</creator><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20250101</creationdate><title>Free‐Standing, Multifunctional Thermoelectric and Acoustic Absorbing Nanocomposite Foams</title><author>Liu, Rui Yang ; Sun, Yu‐Chen ; Liu, Szu‐Ling ; Fang, Weiqing ; Li, Terek ; Martinez‐Rubi, Yadienka ; Jakubinek, Michael ; Ashrafi, Behnam ; Kingston, Christopher ; Naguib, Hani E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2140-b02670b8e3da40d568863c5cd5eaa07f97d01dc46fd929a8d7be47e71b1b9e293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>acoustic absorption</topic><topic>multi‐walled carbon nanotubes</topic><topic>single walled carbon nanotubes</topic><topic>thermally activated microspheres</topic><topic>thermometric nanocomposite foam</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Rui Yang</creatorcontrib><creatorcontrib>Sun, Yu‐Chen</creatorcontrib><creatorcontrib>Liu, Szu‐Ling</creatorcontrib><creatorcontrib>Fang, Weiqing</creatorcontrib><creatorcontrib>Li, Terek</creatorcontrib><creatorcontrib>Martinez‐Rubi, Yadienka</creatorcontrib><creatorcontrib>Jakubinek, Michael</creatorcontrib><creatorcontrib>Ashrafi, Behnam</creatorcontrib><creatorcontrib>Kingston, Christopher</creatorcontrib><creatorcontrib>Naguib, Hani E.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>Advanced sustainable systems (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Rui Yang</au><au>Sun, Yu‐Chen</au><au>Liu, Szu‐Ling</au><au>Fang, Weiqing</au><au>Li, Terek</au><au>Martinez‐Rubi, Yadienka</au><au>Jakubinek, Michael</au><au>Ashrafi, Behnam</au><au>Kingston, Christopher</au><au>Naguib, Hani E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free‐Standing, Multifunctional Thermoelectric and Acoustic Absorbing Nanocomposite Foams</atitle><jtitle>Advanced sustainable systems (Online)</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>9</volume><issue>1</issue><epage>n/a</epage><issn>2366-7486</issn><eissn>2366-7486</eissn><abstract>Thermoelectric materials are potential energy harvesting technologies that enable direct, clean conversion between thermal and electrical energy. The efficacy of thermoelectric energy conversion is influenced by the electrical conductivity, thermal conductivity, and Seebeck coefficient. Flexibility, manufacturability, and cost‐effectiveness are also important factors. Polymeric nanocomposites offer advantages in these respects. However, the development of conductive‐polymer thermoelectric materials is limited to an in‐plane architecture, which does not resemble common real‐world scenarios. Moreover, existing works have low thermoelectric properties or rely on additives for performance improvement. In this work, a free‐standing thermoelectric nanocomposite foam is fabricated via the integration of thermally activated microspheres. Due to the microstructure, a thermal conductivity as low as 0.03 W m−1 K−1 is achieved, which is lower than reported for aerogels fabricated via freeze‐drying methods. Additionally, the nanocomposite foam can reach a maximum electrical conductivity of 1.13 S cm−1, power factor of 0.12 µW m−1 K−2, and thermoelectric figure of merit of 3.0 × 10−4. The study also evaluated the compressive stiffness and demonstrated the potential for sound absorption. With the unique combination of the thermoelectric, sound absorption, and mechanical behavior, these nanocomposite foams would offer versatile solutions to address the next generation energy harvesting and acoustic absorption applications. A free‐standing thermoelectric (TE) nanocomposite foam is created by utilizing thermally expandable microspheres in combination with carbon nanotube (CNT) and thermoplastic polyurethane (TPU). The polymer co‐precipitation process successfully integrated the microspheres with the nanofillers, forming a stable conductive network. The nanocomposite foam exhibits a low thermal conductivity between 0.03 to 0.12 W m⁻¹ K⁻¹, similar to aerogels. The nanocomposite foam also achieved a performance of figure of merit (zT) = 3.0 × 10⁻⁴ and power factor (PF) = 0.12 µW m⁻¹ K⁻2.</abstract><doi>10.1002/adsu.202400490</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2366-7486
ispartof Advanced sustainable systems (Online), 2025-01, Vol.9 (1), p.n/a
issn 2366-7486
2366-7486
language eng
recordid cdi_crossref_primary_10_1002_adsu_202400490
source Wiley Online Library Journals Frontfile Complete
subjects acoustic absorption
multi‐walled carbon nanotubes
single walled carbon nanotubes
thermally activated microspheres
thermometric nanocomposite foam
title Free‐Standing, Multifunctional Thermoelectric and Acoustic Absorbing Nanocomposite Foams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T03%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%E2%80%90Standing,%20Multifunctional%20Thermoelectric%20and%20Acoustic%20Absorbing%20Nanocomposite%20Foams&rft.jtitle=Advanced%20sustainable%20systems%20(Online)&rft.au=Liu,%20Rui%20Yang&rft.date=2025-01-01&rft.volume=9&rft.issue=1&rft.epage=n/a&rft.issn=2366-7486&rft.eissn=2366-7486&rft_id=info:doi/10.1002/adsu.202400490&rft_dat=%3Cwiley_cross%3EADSU202400490%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true