Catalytic Hydroxylation in Biphasic Systems using CYP102A1 Mutants

Cytochrome P450 monooxygenases are biocatalysts that hydroxylate or epoxidise a wide range of hydrophobic organic substrates. Their technical application is, however, limited to a small number of whole‐cell processes. The use of the isolated P450 enzymes is believed to be impractical due to their lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced synthesis & catalysis 2005-06, Vol.347 (7-8), p.1090-1098
Hauptverfasser: Maurer, Steffen C., Kühnel, Katja, Kaysser, Leonard A., Eiben, Sabine, Schmid, Rolf D., Urlacher, Vlada B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1098
container_issue 7-8
container_start_page 1090
container_title Advanced synthesis & catalysis
container_volume 347
creator Maurer, Steffen C.
Kühnel, Katja
Kaysser, Leonard A.
Eiben, Sabine
Schmid, Rolf D.
Urlacher, Vlada B.
description Cytochrome P450 monooxygenases are biocatalysts that hydroxylate or epoxidise a wide range of hydrophobic organic substrates. Their technical application is, however, limited to a small number of whole‐cell processes. The use of the isolated P450 enzymes is believed to be impractical due to their low stability, stoichiometric need of the expensive cofactor NAD(P)H and low solubility of most substrates in aqueous media. We investigated the behaviour of an isolated bacterial monooxygenase (mutants of CYP102A1) in a biphasic reaction system supported by cofactor recycling with the NADP+‐dependent formate dehydrogenase from Pseudomonas sp 101. Using this experimental set‐up cyclohexane, octane and myristic acid were hydroxylated. To reduce the process costs a novel NADH‐dependent mutant of CYP102A1 was designed. For recycling of NADH an NAD+‐dependent FDH was used. The stability of the monooxygenase mutants under the reaction conditions in the biphasic system was quite high as revealed by total turnover numbers of up to 12,850 in the NADPH‐dependent cyclohexane hydroxylation and up to 30,000 in the NADH‐dependent myristic acid oxidation.
doi_str_mv 10.1002/adsc.200505044
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adsc_200505044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_3SD0L5KC_B</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3674-cce3ef1d898fb3e58fe580a098b5b43292e6065c4cdd7c0e054ededbc2b77dc73</originalsourceid><addsrcrecordid>eNqFkN9LwzAQgIMoOKevPvcf6Lw0SdM-rp1u4vwBVcSnkCapRrtuNBmu_70dleGbHMcd3H0H9yF0iWGCAaIrqZ2aRACsD0qP0AjHmIUUx-nxoWdwis6c-wTAPOF8hLJcell33qpg0el2vetq6e26CWwTZHbzIV0_KTrnzcoFW2eb9yB_e8IQTXFwv_Wy8e4cnVSydubit47Ry831c74Il4_z23y6DBWJOQ2VMsRUWCdpUpXEsKTqEySkSclKSqI0MjHETFGlNVdggFGjjS5VVHKuFSdjNBnuqnbtXGsqsWntSradwCD2BsTegDgY6IF0AL5tbbp_tsV0VuR_2XBgbf_67sDK9kvEnHAmXh_mghQzWLK7XGTkBx3abw4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Catalytic Hydroxylation in Biphasic Systems using CYP102A1 Mutants</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Maurer, Steffen C. ; Kühnel, Katja ; Kaysser, Leonard A. ; Eiben, Sabine ; Schmid, Rolf D. ; Urlacher, Vlada B.</creator><creatorcontrib>Maurer, Steffen C. ; Kühnel, Katja ; Kaysser, Leonard A. ; Eiben, Sabine ; Schmid, Rolf D. ; Urlacher, Vlada B.</creatorcontrib><description>Cytochrome P450 monooxygenases are biocatalysts that hydroxylate or epoxidise a wide range of hydrophobic organic substrates. Their technical application is, however, limited to a small number of whole‐cell processes. The use of the isolated P450 enzymes is believed to be impractical due to their low stability, stoichiometric need of the expensive cofactor NAD(P)H and low solubility of most substrates in aqueous media. We investigated the behaviour of an isolated bacterial monooxygenase (mutants of CYP102A1) in a biphasic reaction system supported by cofactor recycling with the NADP+‐dependent formate dehydrogenase from Pseudomonas sp 101. Using this experimental set‐up cyclohexane, octane and myristic acid were hydroxylated. To reduce the process costs a novel NADH‐dependent mutant of CYP102A1 was designed. For recycling of NADH an NAD+‐dependent FDH was used. The stability of the monooxygenase mutants under the reaction conditions in the biphasic system was quite high as revealed by total turnover numbers of up to 12,850 in the NADPH‐dependent cyclohexane hydroxylation and up to 30,000 in the NADH‐dependent myristic acid oxidation.</description><identifier>ISSN: 1615-4150</identifier><identifier>EISSN: 1615-4169</identifier><identifier>DOI: 10.1002/adsc.200505044</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>biotransformations ; biphasic system ; cofactor recycling ; cofactor specificity ; green chemistry ; hydroxylation ; P450 monooxygenase</subject><ispartof>Advanced synthesis &amp; catalysis, 2005-06, Vol.347 (7-8), p.1090-1098</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3674-cce3ef1d898fb3e58fe580a098b5b43292e6065c4cdd7c0e054ededbc2b77dc73</citedby><cites>FETCH-LOGICAL-c3674-cce3ef1d898fb3e58fe580a098b5b43292e6065c4cdd7c0e054ededbc2b77dc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadsc.200505044$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadsc.200505044$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Maurer, Steffen C.</creatorcontrib><creatorcontrib>Kühnel, Katja</creatorcontrib><creatorcontrib>Kaysser, Leonard A.</creatorcontrib><creatorcontrib>Eiben, Sabine</creatorcontrib><creatorcontrib>Schmid, Rolf D.</creatorcontrib><creatorcontrib>Urlacher, Vlada B.</creatorcontrib><title>Catalytic Hydroxylation in Biphasic Systems using CYP102A1 Mutants</title><title>Advanced synthesis &amp; catalysis</title><addtitle>Adv. Synth. Catal</addtitle><description>Cytochrome P450 monooxygenases are biocatalysts that hydroxylate or epoxidise a wide range of hydrophobic organic substrates. Their technical application is, however, limited to a small number of whole‐cell processes. The use of the isolated P450 enzymes is believed to be impractical due to their low stability, stoichiometric need of the expensive cofactor NAD(P)H and low solubility of most substrates in aqueous media. We investigated the behaviour of an isolated bacterial monooxygenase (mutants of CYP102A1) in a biphasic reaction system supported by cofactor recycling with the NADP+‐dependent formate dehydrogenase from Pseudomonas sp 101. Using this experimental set‐up cyclohexane, octane and myristic acid were hydroxylated. To reduce the process costs a novel NADH‐dependent mutant of CYP102A1 was designed. For recycling of NADH an NAD+‐dependent FDH was used. The stability of the monooxygenase mutants under the reaction conditions in the biphasic system was quite high as revealed by total turnover numbers of up to 12,850 in the NADPH‐dependent cyclohexane hydroxylation and up to 30,000 in the NADH‐dependent myristic acid oxidation.</description><subject>biotransformations</subject><subject>biphasic system</subject><subject>cofactor recycling</subject><subject>cofactor specificity</subject><subject>green chemistry</subject><subject>hydroxylation</subject><subject>P450 monooxygenase</subject><issn>1615-4150</issn><issn>1615-4169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkN9LwzAQgIMoOKevPvcf6Lw0SdM-rp1u4vwBVcSnkCapRrtuNBmu_70dleGbHMcd3H0H9yF0iWGCAaIrqZ2aRACsD0qP0AjHmIUUx-nxoWdwis6c-wTAPOF8hLJcell33qpg0el2vetq6e26CWwTZHbzIV0_KTrnzcoFW2eb9yB_e8IQTXFwv_Wy8e4cnVSydubit47Ry831c74Il4_z23y6DBWJOQ2VMsRUWCdpUpXEsKTqEySkSclKSqI0MjHETFGlNVdggFGjjS5VVHKuFSdjNBnuqnbtXGsqsWntSradwCD2BsTegDgY6IF0AL5tbbp_tsV0VuR_2XBgbf_67sDK9kvEnHAmXh_mghQzWLK7XGTkBx3abw4</recordid><startdate>200506</startdate><enddate>200506</enddate><creator>Maurer, Steffen C.</creator><creator>Kühnel, Katja</creator><creator>Kaysser, Leonard A.</creator><creator>Eiben, Sabine</creator><creator>Schmid, Rolf D.</creator><creator>Urlacher, Vlada B.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200506</creationdate><title>Catalytic Hydroxylation in Biphasic Systems using CYP102A1 Mutants</title><author>Maurer, Steffen C. ; Kühnel, Katja ; Kaysser, Leonard A. ; Eiben, Sabine ; Schmid, Rolf D. ; Urlacher, Vlada B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3674-cce3ef1d898fb3e58fe580a098b5b43292e6065c4cdd7c0e054ededbc2b77dc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>biotransformations</topic><topic>biphasic system</topic><topic>cofactor recycling</topic><topic>cofactor specificity</topic><topic>green chemistry</topic><topic>hydroxylation</topic><topic>P450 monooxygenase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maurer, Steffen C.</creatorcontrib><creatorcontrib>Kühnel, Katja</creatorcontrib><creatorcontrib>Kaysser, Leonard A.</creatorcontrib><creatorcontrib>Eiben, Sabine</creatorcontrib><creatorcontrib>Schmid, Rolf D.</creatorcontrib><creatorcontrib>Urlacher, Vlada B.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Advanced synthesis &amp; catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maurer, Steffen C.</au><au>Kühnel, Katja</au><au>Kaysser, Leonard A.</au><au>Eiben, Sabine</au><au>Schmid, Rolf D.</au><au>Urlacher, Vlada B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic Hydroxylation in Biphasic Systems using CYP102A1 Mutants</atitle><jtitle>Advanced synthesis &amp; catalysis</jtitle><addtitle>Adv. Synth. Catal</addtitle><date>2005-06</date><risdate>2005</risdate><volume>347</volume><issue>7-8</issue><spage>1090</spage><epage>1098</epage><pages>1090-1098</pages><issn>1615-4150</issn><eissn>1615-4169</eissn><abstract>Cytochrome P450 monooxygenases are biocatalysts that hydroxylate or epoxidise a wide range of hydrophobic organic substrates. Their technical application is, however, limited to a small number of whole‐cell processes. The use of the isolated P450 enzymes is believed to be impractical due to their low stability, stoichiometric need of the expensive cofactor NAD(P)H and low solubility of most substrates in aqueous media. We investigated the behaviour of an isolated bacterial monooxygenase (mutants of CYP102A1) in a biphasic reaction system supported by cofactor recycling with the NADP+‐dependent formate dehydrogenase from Pseudomonas sp 101. Using this experimental set‐up cyclohexane, octane and myristic acid were hydroxylated. To reduce the process costs a novel NADH‐dependent mutant of CYP102A1 was designed. For recycling of NADH an NAD+‐dependent FDH was used. The stability of the monooxygenase mutants under the reaction conditions in the biphasic system was quite high as revealed by total turnover numbers of up to 12,850 in the NADPH‐dependent cyclohexane hydroxylation and up to 30,000 in the NADH‐dependent myristic acid oxidation.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adsc.200505044</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-4150
ispartof Advanced synthesis & catalysis, 2005-06, Vol.347 (7-8), p.1090-1098
issn 1615-4150
1615-4169
language eng
recordid cdi_crossref_primary_10_1002_adsc_200505044
source Wiley Online Library Journals Frontfile Complete
subjects biotransformations
biphasic system
cofactor recycling
cofactor specificity
green chemistry
hydroxylation
P450 monooxygenase
title Catalytic Hydroxylation in Biphasic Systems using CYP102A1 Mutants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A18%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20Hydroxylation%20in%20Biphasic%20Systems%20using%20CYP102A1%20Mutants&rft.jtitle=Advanced%20synthesis%20&%20catalysis&rft.au=Maurer,%20Steffen%E2%80%85C.&rft.date=2005-06&rft.volume=347&rft.issue=7-8&rft.spage=1090&rft.epage=1098&rft.pages=1090-1098&rft.issn=1615-4150&rft.eissn=1615-4169&rft_id=info:doi/10.1002/adsc.200505044&rft_dat=%3Cistex_cross%3Eark_67375_WNG_3SD0L5KC_B%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true