Intelligent Optical Microresonator Imaging Sensor for Early Stage Classification of Dynamical Variations
Intelligent Sensors In the article number 2100242, Anton Saetchnikov and co‐workers propose an intelligent sensor based on multiple optical microresonators for classification of dynamical variations. The sensor is affordably interrogated at the fixed frequency and supplemented by the long short‐term...
Gespeichert in:
Veröffentlicht in: | Advanced photonics research 2021-12, Vol.2 (12), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Advanced photonics research |
container_volume | 2 |
creator | Saetchnikov, Anton V. Tcherniavskaia, Elina A. Saetchnikov, Vladimir A. Ostendorf, Andreas |
description | Intelligent Sensors
In the article number 2100242, Anton Saetchnikov and co‐workers propose an intelligent sensor based on multiple optical microresonators for classification of dynamical variations. The sensor is affordably interrogated at the fixed frequency and supplemented by the long short‐term memory network engine. The accurate prediction of dynamical responses already within a 6 times shorter period than the whole time series of the measurement is demonstrated. |
doi_str_mv | 10.1002/adpr.202170040 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adpr_202170040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADPR202170040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1740-f82c2f02fe52a5b9b3030743aad8cd80ba415d3d8a84af1ccd445816d0eb50d73</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxRdRsNRePe8XSJ3d7DbJsbRVCxXFqtcw2T9xJd2U3YDk25u2ot48DDNvmN-DeYRcM5gyAH6Deh-mHDjLAASckRGfFUVS8CI9_zNfkkmMHzAAkqVMFiPyvvadaRpXG9_Rx33nFDb0wanQBhNbj10b6HqHtfM13RofB2mHWmFoerrtsDZ00WCMzg5k51pPW0uXvcfd0ekNgzuu4xW5sNhEM_nuY_J6u3pZ3Cebx7v1Yr5JFMsEJDbnilvg1kiOsiqqFFLIRIqoc6VzqFAwqVOdYy7QMqW0EDJnMw2mkqCzdEymJ9_hhRiDseU-uB2GvmRQHqIqD1GVP1ENQHECPl1j-n-uy_ny6fmX_QK_vW-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Intelligent Optical Microresonator Imaging Sensor for Early Stage Classification of Dynamical Variations</title><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Saetchnikov, Anton V. ; Tcherniavskaia, Elina A. ; Saetchnikov, Vladimir A. ; Ostendorf, Andreas</creator><creatorcontrib>Saetchnikov, Anton V. ; Tcherniavskaia, Elina A. ; Saetchnikov, Vladimir A. ; Ostendorf, Andreas</creatorcontrib><description>Intelligent Sensors
In the article number 2100242, Anton Saetchnikov and co‐workers propose an intelligent sensor based on multiple optical microresonators for classification of dynamical variations. The sensor is affordably interrogated at the fixed frequency and supplemented by the long short‐term memory network engine. The accurate prediction of dynamical responses already within a 6 times shorter period than the whole time series of the measurement is demonstrated.</description><identifier>ISSN: 2699-9293</identifier><identifier>EISSN: 2699-9293</identifier><identifier>DOI: 10.1002/adpr.202170040</identifier><language>eng</language><ispartof>Advanced photonics research, 2021-12, Vol.2 (12), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1740-f82c2f02fe52a5b9b3030743aad8cd80ba415d3d8a84af1ccd445816d0eb50d73</citedby><orcidid>0000-0002-3601-6392 ; 0000-0002-3255-4126 ; 0000-0002-8332-1250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadpr.202170040$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadpr.202170040$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids></links><search><creatorcontrib>Saetchnikov, Anton V.</creatorcontrib><creatorcontrib>Tcherniavskaia, Elina A.</creatorcontrib><creatorcontrib>Saetchnikov, Vladimir A.</creatorcontrib><creatorcontrib>Ostendorf, Andreas</creatorcontrib><title>Intelligent Optical Microresonator Imaging Sensor for Early Stage Classification of Dynamical Variations</title><title>Advanced photonics research</title><description>Intelligent Sensors
In the article number 2100242, Anton Saetchnikov and co‐workers propose an intelligent sensor based on multiple optical microresonators for classification of dynamical variations. The sensor is affordably interrogated at the fixed frequency and supplemented by the long short‐term memory network engine. The accurate prediction of dynamical responses already within a 6 times shorter period than the whole time series of the measurement is demonstrated.</description><issn>2699-9293</issn><issn>2699-9293</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkE9Lw0AQxRdRsNRePe8XSJ3d7DbJsbRVCxXFqtcw2T9xJd2U3YDk25u2ot48DDNvmN-DeYRcM5gyAH6Deh-mHDjLAASckRGfFUVS8CI9_zNfkkmMHzAAkqVMFiPyvvadaRpXG9_Rx33nFDb0wanQBhNbj10b6HqHtfM13RofB2mHWmFoerrtsDZ00WCMzg5k51pPW0uXvcfd0ekNgzuu4xW5sNhEM_nuY_J6u3pZ3Cebx7v1Yr5JFMsEJDbnilvg1kiOsiqqFFLIRIqoc6VzqFAwqVOdYy7QMqW0EDJnMw2mkqCzdEymJ9_hhRiDseU-uB2GvmRQHqIqD1GVP1ENQHECPl1j-n-uy_ny6fmX_QK_vW-Q</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Saetchnikov, Anton V.</creator><creator>Tcherniavskaia, Elina A.</creator><creator>Saetchnikov, Vladimir A.</creator><creator>Ostendorf, Andreas</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3601-6392</orcidid><orcidid>https://orcid.org/0000-0002-3255-4126</orcidid><orcidid>https://orcid.org/0000-0002-8332-1250</orcidid></search><sort><creationdate>202112</creationdate><title>Intelligent Optical Microresonator Imaging Sensor for Early Stage Classification of Dynamical Variations</title><author>Saetchnikov, Anton V. ; Tcherniavskaia, Elina A. ; Saetchnikov, Vladimir A. ; Ostendorf, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1740-f82c2f02fe52a5b9b3030743aad8cd80ba415d3d8a84af1ccd445816d0eb50d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saetchnikov, Anton V.</creatorcontrib><creatorcontrib>Tcherniavskaia, Elina A.</creatorcontrib><creatorcontrib>Saetchnikov, Vladimir A.</creatorcontrib><creatorcontrib>Ostendorf, Andreas</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><jtitle>Advanced photonics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saetchnikov, Anton V.</au><au>Tcherniavskaia, Elina A.</au><au>Saetchnikov, Vladimir A.</au><au>Ostendorf, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Optical Microresonator Imaging Sensor for Early Stage Classification of Dynamical Variations</atitle><jtitle>Advanced photonics research</jtitle><date>2021-12</date><risdate>2021</risdate><volume>2</volume><issue>12</issue><epage>n/a</epage><issn>2699-9293</issn><eissn>2699-9293</eissn><abstract>Intelligent Sensors
In the article number 2100242, Anton Saetchnikov and co‐workers propose an intelligent sensor based on multiple optical microresonators for classification of dynamical variations. The sensor is affordably interrogated at the fixed frequency and supplemented by the long short‐term memory network engine. The accurate prediction of dynamical responses already within a 6 times shorter period than the whole time series of the measurement is demonstrated.</abstract><doi>10.1002/adpr.202170040</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3601-6392</orcidid><orcidid>https://orcid.org/0000-0002-3255-4126</orcidid><orcidid>https://orcid.org/0000-0002-8332-1250</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2699-9293 |
ispartof | Advanced photonics research, 2021-12, Vol.2 (12), p.n/a |
issn | 2699-9293 2699-9293 |
language | eng |
recordid | cdi_crossref_primary_10_1002_adpr_202170040 |
source | DOAJ Directory of Open Access Journals; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection) |
title | Intelligent Optical Microresonator Imaging Sensor for Early Stage Classification of Dynamical Variations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Optical%20Microresonator%20Imaging%20Sensor%20for%20Early%20Stage%20Classification%20of%20Dynamical%20Variations&rft.jtitle=Advanced%20photonics%20research&rft.au=Saetchnikov,%20Anton%20V.&rft.date=2021-12&rft.volume=2&rft.issue=12&rft.epage=n/a&rft.issn=2699-9293&rft.eissn=2699-9293&rft_id=info:doi/10.1002/adpr.202170040&rft_dat=%3Cwiley_cross%3EADPR202170040%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |