Intelligent Optical Microresonator Imaging Sensor for Early Stage Classification of Dynamical Variations

Intelligent Sensors In the article number 2100242, Anton Saetchnikov and co‐workers propose an intelligent sensor based on multiple optical microresonators for classification of dynamical variations. The sensor is affordably interrogated at the fixed frequency and supplemented by the long short‐term...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced photonics research 2021-12, Vol.2 (12), p.n/a
Hauptverfasser: Saetchnikov, Anton V., Tcherniavskaia, Elina A., Saetchnikov, Vladimir A., Ostendorf, Andreas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Advanced photonics research
container_volume 2
creator Saetchnikov, Anton V.
Tcherniavskaia, Elina A.
Saetchnikov, Vladimir A.
Ostendorf, Andreas
description Intelligent Sensors In the article number 2100242, Anton Saetchnikov and co‐workers propose an intelligent sensor based on multiple optical microresonators for classification of dynamical variations. The sensor is affordably interrogated at the fixed frequency and supplemented by the long short‐term memory network engine. The accurate prediction of dynamical responses already within a 6 times shorter period than the whole time series of the measurement is demonstrated.
doi_str_mv 10.1002/adpr.202170040
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adpr_202170040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADPR202170040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1740-f82c2f02fe52a5b9b3030743aad8cd80ba415d3d8a84af1ccd445816d0eb50d73</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxRdRsNRePe8XSJ3d7DbJsbRVCxXFqtcw2T9xJd2U3YDk25u2ot48DDNvmN-DeYRcM5gyAH6Deh-mHDjLAASckRGfFUVS8CI9_zNfkkmMHzAAkqVMFiPyvvadaRpXG9_Rx33nFDb0wanQBhNbj10b6HqHtfM13RofB2mHWmFoerrtsDZ00WCMzg5k51pPW0uXvcfd0ekNgzuu4xW5sNhEM_nuY_J6u3pZ3Cebx7v1Yr5JFMsEJDbnilvg1kiOsiqqFFLIRIqoc6VzqFAwqVOdYy7QMqW0EDJnMw2mkqCzdEymJ9_hhRiDseU-uB2GvmRQHqIqD1GVP1ENQHECPl1j-n-uy_ny6fmX_QK_vW-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Intelligent Optical Microresonator Imaging Sensor for Early Stage Classification of Dynamical Variations</title><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Saetchnikov, Anton V. ; Tcherniavskaia, Elina A. ; Saetchnikov, Vladimir A. ; Ostendorf, Andreas</creator><creatorcontrib>Saetchnikov, Anton V. ; Tcherniavskaia, Elina A. ; Saetchnikov, Vladimir A. ; Ostendorf, Andreas</creatorcontrib><description>Intelligent Sensors In the article number 2100242, Anton Saetchnikov and co‐workers propose an intelligent sensor based on multiple optical microresonators for classification of dynamical variations. The sensor is affordably interrogated at the fixed frequency and supplemented by the long short‐term memory network engine. The accurate prediction of dynamical responses already within a 6 times shorter period than the whole time series of the measurement is demonstrated.</description><identifier>ISSN: 2699-9293</identifier><identifier>EISSN: 2699-9293</identifier><identifier>DOI: 10.1002/adpr.202170040</identifier><language>eng</language><ispartof>Advanced photonics research, 2021-12, Vol.2 (12), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1740-f82c2f02fe52a5b9b3030743aad8cd80ba415d3d8a84af1ccd445816d0eb50d73</citedby><orcidid>0000-0002-3601-6392 ; 0000-0002-3255-4126 ; 0000-0002-8332-1250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadpr.202170040$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadpr.202170040$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids></links><search><creatorcontrib>Saetchnikov, Anton V.</creatorcontrib><creatorcontrib>Tcherniavskaia, Elina A.</creatorcontrib><creatorcontrib>Saetchnikov, Vladimir A.</creatorcontrib><creatorcontrib>Ostendorf, Andreas</creatorcontrib><title>Intelligent Optical Microresonator Imaging Sensor for Early Stage Classification of Dynamical Variations</title><title>Advanced photonics research</title><description>Intelligent Sensors In the article number 2100242, Anton Saetchnikov and co‐workers propose an intelligent sensor based on multiple optical microresonators for classification of dynamical variations. The sensor is affordably interrogated at the fixed frequency and supplemented by the long short‐term memory network engine. The accurate prediction of dynamical responses already within a 6 times shorter period than the whole time series of the measurement is demonstrated.</description><issn>2699-9293</issn><issn>2699-9293</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkE9Lw0AQxRdRsNRePe8XSJ3d7DbJsbRVCxXFqtcw2T9xJd2U3YDk25u2ot48DDNvmN-DeYRcM5gyAH6Deh-mHDjLAASckRGfFUVS8CI9_zNfkkmMHzAAkqVMFiPyvvadaRpXG9_Rx33nFDb0wanQBhNbj10b6HqHtfM13RofB2mHWmFoerrtsDZ00WCMzg5k51pPW0uXvcfd0ekNgzuu4xW5sNhEM_nuY_J6u3pZ3Cebx7v1Yr5JFMsEJDbnilvg1kiOsiqqFFLIRIqoc6VzqFAwqVOdYy7QMqW0EDJnMw2mkqCzdEymJ9_hhRiDseU-uB2GvmRQHqIqD1GVP1ENQHECPl1j-n-uy_ny6fmX_QK_vW-Q</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Saetchnikov, Anton V.</creator><creator>Tcherniavskaia, Elina A.</creator><creator>Saetchnikov, Vladimir A.</creator><creator>Ostendorf, Andreas</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3601-6392</orcidid><orcidid>https://orcid.org/0000-0002-3255-4126</orcidid><orcidid>https://orcid.org/0000-0002-8332-1250</orcidid></search><sort><creationdate>202112</creationdate><title>Intelligent Optical Microresonator Imaging Sensor for Early Stage Classification of Dynamical Variations</title><author>Saetchnikov, Anton V. ; Tcherniavskaia, Elina A. ; Saetchnikov, Vladimir A. ; Ostendorf, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1740-f82c2f02fe52a5b9b3030743aad8cd80ba415d3d8a84af1ccd445816d0eb50d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saetchnikov, Anton V.</creatorcontrib><creatorcontrib>Tcherniavskaia, Elina A.</creatorcontrib><creatorcontrib>Saetchnikov, Vladimir A.</creatorcontrib><creatorcontrib>Ostendorf, Andreas</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><jtitle>Advanced photonics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saetchnikov, Anton V.</au><au>Tcherniavskaia, Elina A.</au><au>Saetchnikov, Vladimir A.</au><au>Ostendorf, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Optical Microresonator Imaging Sensor for Early Stage Classification of Dynamical Variations</atitle><jtitle>Advanced photonics research</jtitle><date>2021-12</date><risdate>2021</risdate><volume>2</volume><issue>12</issue><epage>n/a</epage><issn>2699-9293</issn><eissn>2699-9293</eissn><abstract>Intelligent Sensors In the article number 2100242, Anton Saetchnikov and co‐workers propose an intelligent sensor based on multiple optical microresonators for classification of dynamical variations. The sensor is affordably interrogated at the fixed frequency and supplemented by the long short‐term memory network engine. The accurate prediction of dynamical responses already within a 6 times shorter period than the whole time series of the measurement is demonstrated.</abstract><doi>10.1002/adpr.202170040</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3601-6392</orcidid><orcidid>https://orcid.org/0000-0002-3255-4126</orcidid><orcidid>https://orcid.org/0000-0002-8332-1250</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2699-9293
ispartof Advanced photonics research, 2021-12, Vol.2 (12), p.n/a
issn 2699-9293
2699-9293
language eng
recordid cdi_crossref_primary_10_1002_adpr_202170040
source DOAJ Directory of Open Access Journals; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
title Intelligent Optical Microresonator Imaging Sensor for Early Stage Classification of Dynamical Variations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Optical%20Microresonator%20Imaging%20Sensor%20for%20Early%20Stage%20Classification%20of%20Dynamical%20Variations&rft.jtitle=Advanced%20photonics%20research&rft.au=Saetchnikov,%20Anton%20V.&rft.date=2021-12&rft.volume=2&rft.issue=12&rft.epage=n/a&rft.issn=2699-9293&rft.eissn=2699-9293&rft_id=info:doi/10.1002/adpr.202170040&rft_dat=%3Cwiley_cross%3EADPR202170040%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true