Enhanced Energy Transfer from Nitrogen‐Vacancy Centers to Three‐Dimensional Graphene Heterostructures by Laser Nanoshaping

Graphene, a well‐studied 2D material, is used to tailor the emission behavior of proximal light emitters by controlling the energy flow to modulate the related relaxation rates, with potentials in fields of biosensing and photovoltaics. Good interface between emitters and 2D materials are important...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2021-12, Vol.9 (23), p.n/a
Hauptverfasser: Liu, Jing, Hu, Yaowu, Kumar, Prashant, Liu, Xingtao, Irudayaraj, Joseph M. K., Cheng, Gary J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page
container_title Advanced optical materials
container_volume 9
creator Liu, Jing
Hu, Yaowu
Kumar, Prashant
Liu, Xingtao
Irudayaraj, Joseph M. K.
Cheng, Gary J.
description Graphene, a well‐studied 2D material, is used to tailor the emission behavior of proximal light emitters by controlling the energy flow to modulate the related relaxation rates, with potentials in fields of biosensing and photovoltaics. Good interface between emitters and 2D materials are important to efficiently modulate the photon emission behavior. However, seamless integration of quantum light emitters and atomically thin materials is challenging due to fabrication limitation. In this paper, the utilization of laser nanoshaping approaches to “wrap” the atomically thin graphene on nanodiamond particles is reported. Compared with 2D layout, the 3D integration enhances the energy transfer by 45%. Furthermore, it is found that the energy transfer efficiency of nitrogen‐vacancy (NV) centers to the 3D graphene can reach a maximum value of 80% over a long distance (≈25 nm), under intense laser excitation. The authors’ analysis indicates that the photon‐generated carrier density of graphene enhances the nonradiative decay rate of NV centers. Besides contributing new insight on the fundamentals of interactions between graphene and quantum emitters, the effort undertaken furthermore holds tremendous promise in developing the graphene‐based nano‐cavities for various applications ranging from sensing, to photovoltaics, to lasing, and to quantum communications. This work reports the utilization of laser nanoshaping approaches to “wrap” the atomically thin graphene on nanodiamond particles. Compared with the 2D layout, the 3D integration enhances the energy transfer by 45%. This effort holds tremendous promise in developing the graphene‐based nano‐cavities for various applications ranging from sensing, to photovoltaics, to lasing, and to quantum communications.
doi_str_mv 10.1002/adom.202001830
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adom_202001830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605445310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3830-506e711c2fc106bd430d99cf4dbdfe60c34ad410227309dc5786ec784f749d5d3</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EElXpymyJOeWcOEkzVm1pkUpZCmvk2pcmVWMHOxXKgvgJ_EZ-Ca6KgI3pTrrvPb17hFwzGDKA8FYoUw9DCAHYKIIz0gtZFgcMUnb-Z78kA-d24CFIo4ynPfI206XQEhWdabTbjq6t0K5ASwtrarqqWmu2qD_fP56F9GBHJ6hbtI62hq5Li-hP06pG7SqjxZ7OrWhK1EgX6DHjWnuQ7cGio5uOLoXzziuhjStFU-ntFbkoxN7h4Hv2ydPdbD1ZBMvH-f1kvAxk5N8JYkgwZUyGhWSQbBSPQGWZLLjaqAITkBEXijMIwzSCTMk4HSUo0xEvUp6pWEV9cnPybax5OaBr8505WJ_X5WECMedxxMBTwxMlfXBnscgbW9XCdjmD_Fhzfqw5_6nZC7KT4LXaY_cPnY-njw-_2i8qHYS-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605445310</pqid></control><display><type>article</type><title>Enhanced Energy Transfer from Nitrogen‐Vacancy Centers to Three‐Dimensional Graphene Heterostructures by Laser Nanoshaping</title><source>Access via Wiley Online Library</source><creator>Liu, Jing ; Hu, Yaowu ; Kumar, Prashant ; Liu, Xingtao ; Irudayaraj, Joseph M. K. ; Cheng, Gary J.</creator><creatorcontrib>Liu, Jing ; Hu, Yaowu ; Kumar, Prashant ; Liu, Xingtao ; Irudayaraj, Joseph M. K. ; Cheng, Gary J.</creatorcontrib><description>Graphene, a well‐studied 2D material, is used to tailor the emission behavior of proximal light emitters by controlling the energy flow to modulate the related relaxation rates, with potentials in fields of biosensing and photovoltaics. Good interface between emitters and 2D materials are important to efficiently modulate the photon emission behavior. However, seamless integration of quantum light emitters and atomically thin materials is challenging due to fabrication limitation. In this paper, the utilization of laser nanoshaping approaches to “wrap” the atomically thin graphene on nanodiamond particles is reported. Compared with 2D layout, the 3D integration enhances the energy transfer by 45%. Furthermore, it is found that the energy transfer efficiency of nitrogen‐vacancy (NV) centers to the 3D graphene can reach a maximum value of 80% over a long distance (≈25 nm), under intense laser excitation. The authors’ analysis indicates that the photon‐generated carrier density of graphene enhances the nonradiative decay rate of NV centers. Besides contributing new insight on the fundamentals of interactions between graphene and quantum emitters, the effort undertaken furthermore holds tremendous promise in developing the graphene‐based nano‐cavities for various applications ranging from sensing, to photovoltaics, to lasing, and to quantum communications. This work reports the utilization of laser nanoshaping approaches to “wrap” the atomically thin graphene on nanodiamond particles. Compared with the 2D layout, the 3D integration enhances the energy transfer by 45%. This effort holds tremendous promise in developing the graphene‐based nano‐cavities for various applications ranging from sensing, to photovoltaics, to lasing, and to quantum communications.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202001830</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carrier density ; Decay rate ; Diamonds ; Emission analysis ; Emitters ; energy coupling ; Energy flow ; Energy transfer ; Graphene ; Heterostructures ; Lasers ; Materials science ; multiphoton emission ; Nanostructure ; nitrogen‐vacancy centers ; Optics ; opto–mechanical nanoshaping ; Photon emission ; Photons ; Photovoltaic cells ; Two dimensional materials ; two‐dimensional/three‐dimensional graphene nanostructures ; Vacancies</subject><ispartof>Advanced optical materials, 2021-12, Vol.9 (23), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3830-506e711c2fc106bd430d99cf4dbdfe60c34ad410227309dc5786ec784f749d5d3</citedby><cites>FETCH-LOGICAL-c3830-506e711c2fc106bd430d99cf4dbdfe60c34ad410227309dc5786ec784f749d5d3</cites><orcidid>0000-0002-1184-2946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202001830$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202001830$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Hu, Yaowu</creatorcontrib><creatorcontrib>Kumar, Prashant</creatorcontrib><creatorcontrib>Liu, Xingtao</creatorcontrib><creatorcontrib>Irudayaraj, Joseph M. K.</creatorcontrib><creatorcontrib>Cheng, Gary J.</creatorcontrib><title>Enhanced Energy Transfer from Nitrogen‐Vacancy Centers to Three‐Dimensional Graphene Heterostructures by Laser Nanoshaping</title><title>Advanced optical materials</title><description>Graphene, a well‐studied 2D material, is used to tailor the emission behavior of proximal light emitters by controlling the energy flow to modulate the related relaxation rates, with potentials in fields of biosensing and photovoltaics. Good interface between emitters and 2D materials are important to efficiently modulate the photon emission behavior. However, seamless integration of quantum light emitters and atomically thin materials is challenging due to fabrication limitation. In this paper, the utilization of laser nanoshaping approaches to “wrap” the atomically thin graphene on nanodiamond particles is reported. Compared with 2D layout, the 3D integration enhances the energy transfer by 45%. Furthermore, it is found that the energy transfer efficiency of nitrogen‐vacancy (NV) centers to the 3D graphene can reach a maximum value of 80% over a long distance (≈25 nm), under intense laser excitation. The authors’ analysis indicates that the photon‐generated carrier density of graphene enhances the nonradiative decay rate of NV centers. Besides contributing new insight on the fundamentals of interactions between graphene and quantum emitters, the effort undertaken furthermore holds tremendous promise in developing the graphene‐based nano‐cavities for various applications ranging from sensing, to photovoltaics, to lasing, and to quantum communications. This work reports the utilization of laser nanoshaping approaches to “wrap” the atomically thin graphene on nanodiamond particles. Compared with the 2D layout, the 3D integration enhances the energy transfer by 45%. This effort holds tremendous promise in developing the graphene‐based nano‐cavities for various applications ranging from sensing, to photovoltaics, to lasing, and to quantum communications.</description><subject>Carrier density</subject><subject>Decay rate</subject><subject>Diamonds</subject><subject>Emission analysis</subject><subject>Emitters</subject><subject>energy coupling</subject><subject>Energy flow</subject><subject>Energy transfer</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Lasers</subject><subject>Materials science</subject><subject>multiphoton emission</subject><subject>Nanostructure</subject><subject>nitrogen‐vacancy centers</subject><subject>Optics</subject><subject>opto–mechanical nanoshaping</subject><subject>Photon emission</subject><subject>Photons</subject><subject>Photovoltaic cells</subject><subject>Two dimensional materials</subject><subject>two‐dimensional/three‐dimensional graphene nanostructures</subject><subject>Vacancies</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQhS0EElXpymyJOeWcOEkzVm1pkUpZCmvk2pcmVWMHOxXKgvgJ_EZ-Ca6KgI3pTrrvPb17hFwzGDKA8FYoUw9DCAHYKIIz0gtZFgcMUnb-Z78kA-d24CFIo4ynPfI206XQEhWdabTbjq6t0K5ASwtrarqqWmu2qD_fP56F9GBHJ6hbtI62hq5Li-hP06pG7SqjxZ7OrWhK1EgX6DHjWnuQ7cGio5uOLoXzziuhjStFU-ntFbkoxN7h4Hv2ydPdbD1ZBMvH-f1kvAxk5N8JYkgwZUyGhWSQbBSPQGWZLLjaqAITkBEXijMIwzSCTMk4HSUo0xEvUp6pWEV9cnPybax5OaBr8505WJ_X5WECMedxxMBTwxMlfXBnscgbW9XCdjmD_Fhzfqw5_6nZC7KT4LXaY_cPnY-njw-_2i8qHYS-</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Liu, Jing</creator><creator>Hu, Yaowu</creator><creator>Kumar, Prashant</creator><creator>Liu, Xingtao</creator><creator>Irudayaraj, Joseph M. K.</creator><creator>Cheng, Gary J.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1184-2946</orcidid></search><sort><creationdate>20211201</creationdate><title>Enhanced Energy Transfer from Nitrogen‐Vacancy Centers to Three‐Dimensional Graphene Heterostructures by Laser Nanoshaping</title><author>Liu, Jing ; Hu, Yaowu ; Kumar, Prashant ; Liu, Xingtao ; Irudayaraj, Joseph M. K. ; Cheng, Gary J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3830-506e711c2fc106bd430d99cf4dbdfe60c34ad410227309dc5786ec784f749d5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carrier density</topic><topic>Decay rate</topic><topic>Diamonds</topic><topic>Emission analysis</topic><topic>Emitters</topic><topic>energy coupling</topic><topic>Energy flow</topic><topic>Energy transfer</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Lasers</topic><topic>Materials science</topic><topic>multiphoton emission</topic><topic>Nanostructure</topic><topic>nitrogen‐vacancy centers</topic><topic>Optics</topic><topic>opto–mechanical nanoshaping</topic><topic>Photon emission</topic><topic>Photons</topic><topic>Photovoltaic cells</topic><topic>Two dimensional materials</topic><topic>two‐dimensional/three‐dimensional graphene nanostructures</topic><topic>Vacancies</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Hu, Yaowu</creatorcontrib><creatorcontrib>Kumar, Prashant</creatorcontrib><creatorcontrib>Liu, Xingtao</creatorcontrib><creatorcontrib>Irudayaraj, Joseph M. K.</creatorcontrib><creatorcontrib>Cheng, Gary J.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jing</au><au>Hu, Yaowu</au><au>Kumar, Prashant</au><au>Liu, Xingtao</au><au>Irudayaraj, Joseph M. K.</au><au>Cheng, Gary J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Energy Transfer from Nitrogen‐Vacancy Centers to Three‐Dimensional Graphene Heterostructures by Laser Nanoshaping</atitle><jtitle>Advanced optical materials</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>9</volume><issue>23</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Graphene, a well‐studied 2D material, is used to tailor the emission behavior of proximal light emitters by controlling the energy flow to modulate the related relaxation rates, with potentials in fields of biosensing and photovoltaics. Good interface between emitters and 2D materials are important to efficiently modulate the photon emission behavior. However, seamless integration of quantum light emitters and atomically thin materials is challenging due to fabrication limitation. In this paper, the utilization of laser nanoshaping approaches to “wrap” the atomically thin graphene on nanodiamond particles is reported. Compared with 2D layout, the 3D integration enhances the energy transfer by 45%. Furthermore, it is found that the energy transfer efficiency of nitrogen‐vacancy (NV) centers to the 3D graphene can reach a maximum value of 80% over a long distance (≈25 nm), under intense laser excitation. The authors’ analysis indicates that the photon‐generated carrier density of graphene enhances the nonradiative decay rate of NV centers. Besides contributing new insight on the fundamentals of interactions between graphene and quantum emitters, the effort undertaken furthermore holds tremendous promise in developing the graphene‐based nano‐cavities for various applications ranging from sensing, to photovoltaics, to lasing, and to quantum communications. This work reports the utilization of laser nanoshaping approaches to “wrap” the atomically thin graphene on nanodiamond particles. Compared with the 2D layout, the 3D integration enhances the energy transfer by 45%. This effort holds tremendous promise in developing the graphene‐based nano‐cavities for various applications ranging from sensing, to photovoltaics, to lasing, and to quantum communications.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202001830</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1184-2946</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2021-12, Vol.9 (23), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_crossref_primary_10_1002_adom_202001830
source Access via Wiley Online Library
subjects Carrier density
Decay rate
Diamonds
Emission analysis
Emitters
energy coupling
Energy flow
Energy transfer
Graphene
Heterostructures
Lasers
Materials science
multiphoton emission
Nanostructure
nitrogen‐vacancy centers
Optics
opto–mechanical nanoshaping
Photon emission
Photons
Photovoltaic cells
Two dimensional materials
two‐dimensional/three‐dimensional graphene nanostructures
Vacancies
title Enhanced Energy Transfer from Nitrogen‐Vacancy Centers to Three‐Dimensional Graphene Heterostructures by Laser Nanoshaping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A08%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Energy%20Transfer%20from%20Nitrogen%E2%80%90Vacancy%20Centers%20to%20Three%E2%80%90Dimensional%20Graphene%20Heterostructures%20by%20Laser%20Nanoshaping&rft.jtitle=Advanced%20optical%20materials&rft.au=Liu,%20Jing&rft.date=2021-12-01&rft.volume=9&rft.issue=23&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202001830&rft_dat=%3Cproquest_cross%3E2605445310%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605445310&rft_id=info:pmid/&rfr_iscdi=true