Gallium Oxide for High‐Power Optical Applications
Gallium oxide (Ga2O3) is an emerging wide‐bandgap transparent conductive oxide (TCO) with potential applications for high‐power optical systems. Herein, Ga2O3 fabricated nanostructures are described, which demonstrate high‐power laser induced damage threshold (LIDT). Furthermore, the demonstration o...
Gespeichert in:
Veröffentlicht in: | Advanced optical materials 2020-04, Vol.8 (7), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 8 |
creator | Deng, Huiyang Leedle, Kenneth J. Miao, Yu Black, Dylan S. Urbanek, Karel E. McNeur, Joshua Kozák, Martin Ceballos, Andrew Hommelhoff, Peter Solgaard, Olav Byer, Robert L. Harris, James S. |
description | Gallium oxide (Ga2O3) is an emerging wide‐bandgap transparent conductive oxide (TCO) with potential applications for high‐power optical systems. Herein, Ga2O3 fabricated nanostructures are described, which demonstrate high‐power laser induced damage threshold (LIDT). Furthermore, the demonstration of an electron accelerator based on Ga2O3 gratings is reported. These unique Ga2O3 nanostructures provide acceleration gradients exceeding those possible with conventional RF accelerators due to the high breakdown threshold of Ga2O3. In addition, the laser damage threshold and acceleration performance of a Ga2O3‐based dielectric laser accelerator (DLA) are compared with those of a DLA based on sapphire, a material known for its high breakdown strength. Finally, the potential of Ga2O3 thin‐film coatings as field reduction layers for Si nanostructures is shown; they potentially improve the effective LIDT and performance of Si‐based DLAs and other high‐power optical structures. These results could provide a foundation for new high‐power optical applications with Ga2O3.
The high laser damage threshold and moderate conductivity of Ga2O3 are leveraged to demonstrate the first Ga2O3‐based laser accelerator and show Ga2O3 as a promising material for high‐power optical applications. With the distinct properties of Ga2O3 combined with advances in fabrication and wafer growth techniques, more Ga2O3‐based high‐power optical applications will be realized in the near future. |
doi_str_mv | 10.1002/adom.201901522 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adom_201901522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2386112583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3572-dc5ebf0e2adbd136657b3e7d132b96470b9817a9b68c60db5f5de373b2f18c113</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EElXpyhyJOcFn13E8VgVapKIwwGzZsQOu0jrYjUo3HqHPyJOQqgjYmO4_6f_upA-hS8AZYEyulfGrjGAQGBghJ2hAQLAUMIfTP_kcjWJcYoz7hYoxHyA6U03julVSvjtjk9qHZO5eXj8_9o9-a0NSthtXqSaZtG3Th43z63iBzmrVRDv6nkP0fHf7NJ2ni3J2P50s0ooyTlJTMatrbIky2gDNc8Y1tbyPRIt8zLEWBXAldF5UOTaa1cxYyqkmNRQVAB2iq-PdNvi3zsaNXPourPuXktAiByCsoH0rO7aq4GMMtpZtcCsVdhKwPLiRBzfyx00PiCOwdY3d_dOWk5vy4Zf9Ams7Z4Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386112583</pqid></control><display><type>article</type><title>Gallium Oxide for High‐Power Optical Applications</title><source>Wiley-Blackwell Journals</source><creator>Deng, Huiyang ; Leedle, Kenneth J. ; Miao, Yu ; Black, Dylan S. ; Urbanek, Karel E. ; McNeur, Joshua ; Kozák, Martin ; Ceballos, Andrew ; Hommelhoff, Peter ; Solgaard, Olav ; Byer, Robert L. ; Harris, James S.</creator><creatorcontrib>Deng, Huiyang ; Leedle, Kenneth J. ; Miao, Yu ; Black, Dylan S. ; Urbanek, Karel E. ; McNeur, Joshua ; Kozák, Martin ; Ceballos, Andrew ; Hommelhoff, Peter ; Solgaard, Olav ; Byer, Robert L. ; Harris, James S.</creatorcontrib><description>Gallium oxide (Ga2O3) is an emerging wide‐bandgap transparent conductive oxide (TCO) with potential applications for high‐power optical systems. Herein, Ga2O3 fabricated nanostructures are described, which demonstrate high‐power laser induced damage threshold (LIDT). Furthermore, the demonstration of an electron accelerator based on Ga2O3 gratings is reported. These unique Ga2O3 nanostructures provide acceleration gradients exceeding those possible with conventional RF accelerators due to the high breakdown threshold of Ga2O3. In addition, the laser damage threshold and acceleration performance of a Ga2O3‐based dielectric laser accelerator (DLA) are compared with those of a DLA based on sapphire, a material known for its high breakdown strength. Finally, the potential of Ga2O3 thin‐film coatings as field reduction layers for Si nanostructures is shown; they potentially improve the effective LIDT and performance of Si‐based DLAs and other high‐power optical structures. These results could provide a foundation for new high‐power optical applications with Ga2O3.
The high laser damage threshold and moderate conductivity of Ga2O3 are leveraged to demonstrate the first Ga2O3‐based laser accelerator and show Ga2O3 as a promising material for high‐power optical applications. With the distinct properties of Ga2O3 combined with advances in fabrication and wafer growth techniques, more Ga2O3‐based high‐power optical applications will be realized in the near future.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.201901522</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Accelerators ; Breakdown ; dielectric laser accelerator ; gallium oxide ; Gallium oxides ; high‐power optical systems ; Laser damage ; Lasers ; Materials science ; Nanostructure ; nanostructures ; optical materials ; Optics ; Sapphire ; Yield point</subject><ispartof>Advanced optical materials, 2020-04, Vol.8 (7), p.n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3572-dc5ebf0e2adbd136657b3e7d132b96470b9817a9b68c60db5f5de373b2f18c113</citedby><cites>FETCH-LOGICAL-c3572-dc5ebf0e2adbd136657b3e7d132b96470b9817a9b68c60db5f5de373b2f18c113</cites><orcidid>0000-0002-8022-1537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.201901522$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.201901522$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Deng, Huiyang</creatorcontrib><creatorcontrib>Leedle, Kenneth J.</creatorcontrib><creatorcontrib>Miao, Yu</creatorcontrib><creatorcontrib>Black, Dylan S.</creatorcontrib><creatorcontrib>Urbanek, Karel E.</creatorcontrib><creatorcontrib>McNeur, Joshua</creatorcontrib><creatorcontrib>Kozák, Martin</creatorcontrib><creatorcontrib>Ceballos, Andrew</creatorcontrib><creatorcontrib>Hommelhoff, Peter</creatorcontrib><creatorcontrib>Solgaard, Olav</creatorcontrib><creatorcontrib>Byer, Robert L.</creatorcontrib><creatorcontrib>Harris, James S.</creatorcontrib><title>Gallium Oxide for High‐Power Optical Applications</title><title>Advanced optical materials</title><description>Gallium oxide (Ga2O3) is an emerging wide‐bandgap transparent conductive oxide (TCO) with potential applications for high‐power optical systems. Herein, Ga2O3 fabricated nanostructures are described, which demonstrate high‐power laser induced damage threshold (LIDT). Furthermore, the demonstration of an electron accelerator based on Ga2O3 gratings is reported. These unique Ga2O3 nanostructures provide acceleration gradients exceeding those possible with conventional RF accelerators due to the high breakdown threshold of Ga2O3. In addition, the laser damage threshold and acceleration performance of a Ga2O3‐based dielectric laser accelerator (DLA) are compared with those of a DLA based on sapphire, a material known for its high breakdown strength. Finally, the potential of Ga2O3 thin‐film coatings as field reduction layers for Si nanostructures is shown; they potentially improve the effective LIDT and performance of Si‐based DLAs and other high‐power optical structures. These results could provide a foundation for new high‐power optical applications with Ga2O3.
The high laser damage threshold and moderate conductivity of Ga2O3 are leveraged to demonstrate the first Ga2O3‐based laser accelerator and show Ga2O3 as a promising material for high‐power optical applications. With the distinct properties of Ga2O3 combined with advances in fabrication and wafer growth techniques, more Ga2O3‐based high‐power optical applications will be realized in the near future.</description><subject>Accelerators</subject><subject>Breakdown</subject><subject>dielectric laser accelerator</subject><subject>gallium oxide</subject><subject>Gallium oxides</subject><subject>high‐power optical systems</subject><subject>Laser damage</subject><subject>Lasers</subject><subject>Materials science</subject><subject>Nanostructure</subject><subject>nanostructures</subject><subject>optical materials</subject><subject>Optics</subject><subject>Sapphire</subject><subject>Yield point</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkLFOwzAQhi0EElXpyhyJOcFn13E8VgVapKIwwGzZsQOu0jrYjUo3HqHPyJOQqgjYmO4_6f_upA-hS8AZYEyulfGrjGAQGBghJ2hAQLAUMIfTP_kcjWJcYoz7hYoxHyA6U03julVSvjtjk9qHZO5eXj8_9o9-a0NSthtXqSaZtG3Th43z63iBzmrVRDv6nkP0fHf7NJ2ni3J2P50s0ooyTlJTMatrbIky2gDNc8Y1tbyPRIt8zLEWBXAldF5UOTaa1cxYyqkmNRQVAB2iq-PdNvi3zsaNXPourPuXktAiByCsoH0rO7aq4GMMtpZtcCsVdhKwPLiRBzfyx00PiCOwdY3d_dOWk5vy4Zf9Ams7Z4Y</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Deng, Huiyang</creator><creator>Leedle, Kenneth J.</creator><creator>Miao, Yu</creator><creator>Black, Dylan S.</creator><creator>Urbanek, Karel E.</creator><creator>McNeur, Joshua</creator><creator>Kozák, Martin</creator><creator>Ceballos, Andrew</creator><creator>Hommelhoff, Peter</creator><creator>Solgaard, Olav</creator><creator>Byer, Robert L.</creator><creator>Harris, James S.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8022-1537</orcidid></search><sort><creationdate>20200401</creationdate><title>Gallium Oxide for High‐Power Optical Applications</title><author>Deng, Huiyang ; Leedle, Kenneth J. ; Miao, Yu ; Black, Dylan S. ; Urbanek, Karel E. ; McNeur, Joshua ; Kozák, Martin ; Ceballos, Andrew ; Hommelhoff, Peter ; Solgaard, Olav ; Byer, Robert L. ; Harris, James S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3572-dc5ebf0e2adbd136657b3e7d132b96470b9817a9b68c60db5f5de373b2f18c113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerators</topic><topic>Breakdown</topic><topic>dielectric laser accelerator</topic><topic>gallium oxide</topic><topic>Gallium oxides</topic><topic>high‐power optical systems</topic><topic>Laser damage</topic><topic>Lasers</topic><topic>Materials science</topic><topic>Nanostructure</topic><topic>nanostructures</topic><topic>optical materials</topic><topic>Optics</topic><topic>Sapphire</topic><topic>Yield point</topic><toplevel>online_resources</toplevel><creatorcontrib>Deng, Huiyang</creatorcontrib><creatorcontrib>Leedle, Kenneth J.</creatorcontrib><creatorcontrib>Miao, Yu</creatorcontrib><creatorcontrib>Black, Dylan S.</creatorcontrib><creatorcontrib>Urbanek, Karel E.</creatorcontrib><creatorcontrib>McNeur, Joshua</creatorcontrib><creatorcontrib>Kozák, Martin</creatorcontrib><creatorcontrib>Ceballos, Andrew</creatorcontrib><creatorcontrib>Hommelhoff, Peter</creatorcontrib><creatorcontrib>Solgaard, Olav</creatorcontrib><creatorcontrib>Byer, Robert L.</creatorcontrib><creatorcontrib>Harris, James S.</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Free Archive</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Huiyang</au><au>Leedle, Kenneth J.</au><au>Miao, Yu</au><au>Black, Dylan S.</au><au>Urbanek, Karel E.</au><au>McNeur, Joshua</au><au>Kozák, Martin</au><au>Ceballos, Andrew</au><au>Hommelhoff, Peter</au><au>Solgaard, Olav</au><au>Byer, Robert L.</au><au>Harris, James S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gallium Oxide for High‐Power Optical Applications</atitle><jtitle>Advanced optical materials</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>8</volume><issue>7</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Gallium oxide (Ga2O3) is an emerging wide‐bandgap transparent conductive oxide (TCO) with potential applications for high‐power optical systems. Herein, Ga2O3 fabricated nanostructures are described, which demonstrate high‐power laser induced damage threshold (LIDT). Furthermore, the demonstration of an electron accelerator based on Ga2O3 gratings is reported. These unique Ga2O3 nanostructures provide acceleration gradients exceeding those possible with conventional RF accelerators due to the high breakdown threshold of Ga2O3. In addition, the laser damage threshold and acceleration performance of a Ga2O3‐based dielectric laser accelerator (DLA) are compared with those of a DLA based on sapphire, a material known for its high breakdown strength. Finally, the potential of Ga2O3 thin‐film coatings as field reduction layers for Si nanostructures is shown; they potentially improve the effective LIDT and performance of Si‐based DLAs and other high‐power optical structures. These results could provide a foundation for new high‐power optical applications with Ga2O3.
The high laser damage threshold and moderate conductivity of Ga2O3 are leveraged to demonstrate the first Ga2O3‐based laser accelerator and show Ga2O3 as a promising material for high‐power optical applications. With the distinct properties of Ga2O3 combined with advances in fabrication and wafer growth techniques, more Ga2O3‐based high‐power optical applications will be realized in the near future.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.201901522</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8022-1537</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2020-04, Vol.8 (7), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_crossref_primary_10_1002_adom_201901522 |
source | Wiley-Blackwell Journals |
subjects | Accelerators Breakdown dielectric laser accelerator gallium oxide Gallium oxides high‐power optical systems Laser damage Lasers Materials science Nanostructure nanostructures optical materials Optics Sapphire Yield point |
title | Gallium Oxide for High‐Power Optical Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gallium%20Oxide%20for%20High%E2%80%90Power%20Optical%20Applications&rft.jtitle=Advanced%20optical%20materials&rft.au=Deng,%20Huiyang&rft.date=2020-04-01&rft.volume=8&rft.issue=7&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.201901522&rft_dat=%3Cproquest_cross%3E2386112583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386112583&rft_id=info:pmid/&rfr_iscdi=true |