Deep‐Learning‐Assisted Triboelectric Whisker Sensor Array for Real‐Time Motion Sensing of Unmanned Underwater Vehicle

Aquatic animals can perceive their surrounding flow fields through highly evolved sensory systems. For instance, a seal whisker array understands the hydrodynamic field that allows seals to forage and navigate in dark environments. In this work, a deep learning‐assisted underwater triboelectric whis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials technologies 2024-09, Vol.10 (3), p.n/a
Hauptverfasser: Liu, Bo, Dong, Bowen, Jin, Hao, Zhu, Peng, Mu, Zhaoyang, Li, Yuanzheng, Liu, Jianhua, Meng, Zhaochen, Zhou, Xinyue, Xu, Peng, Xu, Minyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Advanced materials technologies
container_volume 10
creator Liu, Bo
Dong, Bowen
Jin, Hao
Zhu, Peng
Mu, Zhaoyang
Li, Yuanzheng
Liu, Jianhua
Meng, Zhaochen
Zhou, Xinyue
Xu, Peng
Xu, Minyi
description Aquatic animals can perceive their surrounding flow fields through highly evolved sensory systems. For instance, a seal whisker array understands the hydrodynamic field that allows seals to forage and navigate in dark environments. In this work, a deep learning‐assisted underwater triboelectric whisker sensor array (TWSA) is designed for the 3D motion estimation and near‐field perception of unmanned underwater vehicles. Each sensor comprises a high aspect ratio elliptical whisker shaft, four sensing units at the root of the elliptical whisker shaft, and a flexible corrugated joint simulating the skin on the cheek surface of aquatic animals. The TWSA effectively identifies flow velocity and direction in the 3D underwater environments and exhibits a rapid response time of 19 ms, a high sensitivity of 0.2V/ms−1, and a signal‐to‐noise ratio of 58 dB. The device also locks onto the frequency of the upstream wake vortex, achieving a minimal detection accuracy of 81.2%. Moreover, when integrated with an unmanned underwater vehicle, the TWSA can estimate 3D trajectories assisted by a trained deep learning model, with a root mean square error of ≈0.02. Thus, the TWSA‐based assisted perception holds immense potential for enhancing unmanned underwater vehicle near‐field perception and navigation capabilities across a wide range of applications. This work introduces a deep learning‐assisted triboelectric whisker sensor array (TWSA) for 3D motion estimation and near‐field perception in unmanned underwater vehicles. The TWSA detects flow velocity and direction. It achieves 81.2% accuracy in wake vortex detection and enables precise 3D trajectory estimation with a root mean square error of 0.02, significantly enhancing underwater vehicle navigation capabilities.
doi_str_mv 10.1002/admt.202401053
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_admt_202401053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADMT202401053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1743-5aea2e29fa1849d595a28abf8b486cfefcd27db254f47d3fec8fb288491e8ec3</originalsourceid><addsrcrecordid>eNqFkL1OwzAYRS0EElXpyuwXSLGdpHHGqOVPaoUEKbBFjv2ZGhKnsiNVFQuPwDPyJLgUARvTvcM9Z7gInVIypoSwM6HafswISwglaXyABiyepFFG8sfDP_0Yjbx_JoTQnE5izgbodQaw_nh7n4Nw1tinUAvvje9B4dKZuoMGZO-MxA8r41_A4TuwvnO4cE5ssQ7tFkQTsNK0gBddbzr7tQky3Gm8tK2wNtiWVoHbiD4o7mFlZAMn6EiLxsPoO4eovDgvp1fR_ObyelrMI0mzJI5SAYIBy7WgPMlVmqeCcVFrXid8IjVoqVimapYmOslUrEFyXTMethQ4yHiIxnutdJ33DnS1dqYVbltRUu3Oq3bnVT_nBSDfAxvTwPafdVXMFuUv-wnqlXnF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep‐Learning‐Assisted Triboelectric Whisker Sensor Array for Real‐Time Motion Sensing of Unmanned Underwater Vehicle</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Bo ; Dong, Bowen ; Jin, Hao ; Zhu, Peng ; Mu, Zhaoyang ; Li, Yuanzheng ; Liu, Jianhua ; Meng, Zhaochen ; Zhou, Xinyue ; Xu, Peng ; Xu, Minyi</creator><creatorcontrib>Liu, Bo ; Dong, Bowen ; Jin, Hao ; Zhu, Peng ; Mu, Zhaoyang ; Li, Yuanzheng ; Liu, Jianhua ; Meng, Zhaochen ; Zhou, Xinyue ; Xu, Peng ; Xu, Minyi</creatorcontrib><description>Aquatic animals can perceive their surrounding flow fields through highly evolved sensory systems. For instance, a seal whisker array understands the hydrodynamic field that allows seals to forage and navigate in dark environments. In this work, a deep learning‐assisted underwater triboelectric whisker sensor array (TWSA) is designed for the 3D motion estimation and near‐field perception of unmanned underwater vehicles. Each sensor comprises a high aspect ratio elliptical whisker shaft, four sensing units at the root of the elliptical whisker shaft, and a flexible corrugated joint simulating the skin on the cheek surface of aquatic animals. The TWSA effectively identifies flow velocity and direction in the 3D underwater environments and exhibits a rapid response time of 19 ms, a high sensitivity of 0.2V/ms−1, and a signal‐to‐noise ratio of 58 dB. The device also locks onto the frequency of the upstream wake vortex, achieving a minimal detection accuracy of 81.2%. Moreover, when integrated with an unmanned underwater vehicle, the TWSA can estimate 3D trajectories assisted by a trained deep learning model, with a root mean square error of ≈0.02. Thus, the TWSA‐based assisted perception holds immense potential for enhancing unmanned underwater vehicle near‐field perception and navigation capabilities across a wide range of applications. This work introduces a deep learning‐assisted triboelectric whisker sensor array (TWSA) for 3D motion estimation and near‐field perception in unmanned underwater vehicles. The TWSA detects flow velocity and direction. It achieves 81.2% accuracy in wake vortex detection and enables precise 3D trajectory estimation with a root mean square error of 0.02, significantly enhancing underwater vehicle navigation capabilities.</description><identifier>ISSN: 2365-709X</identifier><identifier>EISSN: 2365-709X</identifier><identifier>DOI: 10.1002/admt.202401053</identifier><language>eng</language><subject>triboelectric nanogenerators ; underwater perception ; whisker sensor array</subject><ispartof>Advanced materials technologies, 2024-09, Vol.10 (3), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1743-5aea2e29fa1849d595a28abf8b486cfefcd27db254f47d3fec8fb288491e8ec3</cites><orcidid>0000-0002-3772-8340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmt.202401053$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmt.202401053$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Dong, Bowen</creatorcontrib><creatorcontrib>Jin, Hao</creatorcontrib><creatorcontrib>Zhu, Peng</creatorcontrib><creatorcontrib>Mu, Zhaoyang</creatorcontrib><creatorcontrib>Li, Yuanzheng</creatorcontrib><creatorcontrib>Liu, Jianhua</creatorcontrib><creatorcontrib>Meng, Zhaochen</creatorcontrib><creatorcontrib>Zhou, Xinyue</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Xu, Minyi</creatorcontrib><title>Deep‐Learning‐Assisted Triboelectric Whisker Sensor Array for Real‐Time Motion Sensing of Unmanned Underwater Vehicle</title><title>Advanced materials technologies</title><description>Aquatic animals can perceive their surrounding flow fields through highly evolved sensory systems. For instance, a seal whisker array understands the hydrodynamic field that allows seals to forage and navigate in dark environments. In this work, a deep learning‐assisted underwater triboelectric whisker sensor array (TWSA) is designed for the 3D motion estimation and near‐field perception of unmanned underwater vehicles. Each sensor comprises a high aspect ratio elliptical whisker shaft, four sensing units at the root of the elliptical whisker shaft, and a flexible corrugated joint simulating the skin on the cheek surface of aquatic animals. The TWSA effectively identifies flow velocity and direction in the 3D underwater environments and exhibits a rapid response time of 19 ms, a high sensitivity of 0.2V/ms−1, and a signal‐to‐noise ratio of 58 dB. The device also locks onto the frequency of the upstream wake vortex, achieving a minimal detection accuracy of 81.2%. Moreover, when integrated with an unmanned underwater vehicle, the TWSA can estimate 3D trajectories assisted by a trained deep learning model, with a root mean square error of ≈0.02. Thus, the TWSA‐based assisted perception holds immense potential for enhancing unmanned underwater vehicle near‐field perception and navigation capabilities across a wide range of applications. This work introduces a deep learning‐assisted triboelectric whisker sensor array (TWSA) for 3D motion estimation and near‐field perception in unmanned underwater vehicles. The TWSA detects flow velocity and direction. It achieves 81.2% accuracy in wake vortex detection and enables precise 3D trajectory estimation with a root mean square error of 0.02, significantly enhancing underwater vehicle navigation capabilities.</description><subject>triboelectric nanogenerators</subject><subject>underwater perception</subject><subject>whisker sensor array</subject><issn>2365-709X</issn><issn>2365-709X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAYRS0EElXpyuwXSLGdpHHGqOVPaoUEKbBFjv2ZGhKnsiNVFQuPwDPyJLgUARvTvcM9Z7gInVIypoSwM6HafswISwglaXyABiyepFFG8sfDP_0Yjbx_JoTQnE5izgbodQaw_nh7n4Nw1tinUAvvje9B4dKZuoMGZO-MxA8r41_A4TuwvnO4cE5ssQ7tFkQTsNK0gBddbzr7tQky3Gm8tK2wNtiWVoHbiD4o7mFlZAMn6EiLxsPoO4eovDgvp1fR_ObyelrMI0mzJI5SAYIBy7WgPMlVmqeCcVFrXid8IjVoqVimapYmOslUrEFyXTMethQ4yHiIxnutdJ33DnS1dqYVbltRUu3Oq3bnVT_nBSDfAxvTwPafdVXMFuUv-wnqlXnF</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>Liu, Bo</creator><creator>Dong, Bowen</creator><creator>Jin, Hao</creator><creator>Zhu, Peng</creator><creator>Mu, Zhaoyang</creator><creator>Li, Yuanzheng</creator><creator>Liu, Jianhua</creator><creator>Meng, Zhaochen</creator><creator>Zhou, Xinyue</creator><creator>Xu, Peng</creator><creator>Xu, Minyi</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3772-8340</orcidid></search><sort><creationdate>20240920</creationdate><title>Deep‐Learning‐Assisted Triboelectric Whisker Sensor Array for Real‐Time Motion Sensing of Unmanned Underwater Vehicle</title><author>Liu, Bo ; Dong, Bowen ; Jin, Hao ; Zhu, Peng ; Mu, Zhaoyang ; Li, Yuanzheng ; Liu, Jianhua ; Meng, Zhaochen ; Zhou, Xinyue ; Xu, Peng ; Xu, Minyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1743-5aea2e29fa1849d595a28abf8b486cfefcd27db254f47d3fec8fb288491e8ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>triboelectric nanogenerators</topic><topic>underwater perception</topic><topic>whisker sensor array</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Dong, Bowen</creatorcontrib><creatorcontrib>Jin, Hao</creatorcontrib><creatorcontrib>Zhu, Peng</creatorcontrib><creatorcontrib>Mu, Zhaoyang</creatorcontrib><creatorcontrib>Li, Yuanzheng</creatorcontrib><creatorcontrib>Liu, Jianhua</creatorcontrib><creatorcontrib>Meng, Zhaochen</creatorcontrib><creatorcontrib>Zhou, Xinyue</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Xu, Minyi</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced materials technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Bo</au><au>Dong, Bowen</au><au>Jin, Hao</au><au>Zhu, Peng</au><au>Mu, Zhaoyang</au><au>Li, Yuanzheng</au><au>Liu, Jianhua</au><au>Meng, Zhaochen</au><au>Zhou, Xinyue</au><au>Xu, Peng</au><au>Xu, Minyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep‐Learning‐Assisted Triboelectric Whisker Sensor Array for Real‐Time Motion Sensing of Unmanned Underwater Vehicle</atitle><jtitle>Advanced materials technologies</jtitle><date>2024-09-20</date><risdate>2024</risdate><volume>10</volume><issue>3</issue><epage>n/a</epage><issn>2365-709X</issn><eissn>2365-709X</eissn><abstract>Aquatic animals can perceive their surrounding flow fields through highly evolved sensory systems. For instance, a seal whisker array understands the hydrodynamic field that allows seals to forage and navigate in dark environments. In this work, a deep learning‐assisted underwater triboelectric whisker sensor array (TWSA) is designed for the 3D motion estimation and near‐field perception of unmanned underwater vehicles. Each sensor comprises a high aspect ratio elliptical whisker shaft, four sensing units at the root of the elliptical whisker shaft, and a flexible corrugated joint simulating the skin on the cheek surface of aquatic animals. The TWSA effectively identifies flow velocity and direction in the 3D underwater environments and exhibits a rapid response time of 19 ms, a high sensitivity of 0.2V/ms−1, and a signal‐to‐noise ratio of 58 dB. The device also locks onto the frequency of the upstream wake vortex, achieving a minimal detection accuracy of 81.2%. Moreover, when integrated with an unmanned underwater vehicle, the TWSA can estimate 3D trajectories assisted by a trained deep learning model, with a root mean square error of ≈0.02. Thus, the TWSA‐based assisted perception holds immense potential for enhancing unmanned underwater vehicle near‐field perception and navigation capabilities across a wide range of applications. This work introduces a deep learning‐assisted triboelectric whisker sensor array (TWSA) for 3D motion estimation and near‐field perception in unmanned underwater vehicles. The TWSA detects flow velocity and direction. It achieves 81.2% accuracy in wake vortex detection and enables precise 3D trajectory estimation with a root mean square error of 0.02, significantly enhancing underwater vehicle navigation capabilities.</abstract><doi>10.1002/admt.202401053</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3772-8340</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2365-709X
ispartof Advanced materials technologies, 2024-09, Vol.10 (3), p.n/a
issn 2365-709X
2365-709X
language eng
recordid cdi_crossref_primary_10_1002_admt_202401053
source Wiley Online Library Journals Frontfile Complete
subjects triboelectric nanogenerators
underwater perception
whisker sensor array
title Deep‐Learning‐Assisted Triboelectric Whisker Sensor Array for Real‐Time Motion Sensing of Unmanned Underwater Vehicle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%E2%80%90Learning%E2%80%90Assisted%20Triboelectric%20Whisker%20Sensor%20Array%20for%20Real%E2%80%90Time%20Motion%20Sensing%20of%20Unmanned%20Underwater%20Vehicle&rft.jtitle=Advanced%20materials%20technologies&rft.au=Liu,%20Bo&rft.date=2024-09-20&rft.volume=10&rft.issue=3&rft.epage=n/a&rft.issn=2365-709X&rft.eissn=2365-709X&rft_id=info:doi/10.1002/admt.202401053&rft_dat=%3Cwiley_cross%3EADMT202401053%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true