Deep‐Learning‐Assisted Triboelectric Whisker Sensor Array for Real‐Time Motion Sensing of Unmanned Underwater Vehicle
Aquatic animals can perceive their surrounding flow fields through highly evolved sensory systems. For instance, a seal whisker array understands the hydrodynamic field that allows seals to forage and navigate in dark environments. In this work, a deep learning‐assisted underwater triboelectric whis...
Gespeichert in:
Veröffentlicht in: | Advanced materials technologies 2024-09, Vol.10 (3), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Advanced materials technologies |
container_volume | 10 |
creator | Liu, Bo Dong, Bowen Jin, Hao Zhu, Peng Mu, Zhaoyang Li, Yuanzheng Liu, Jianhua Meng, Zhaochen Zhou, Xinyue Xu, Peng Xu, Minyi |
description | Aquatic animals can perceive their surrounding flow fields through highly evolved sensory systems. For instance, a seal whisker array understands the hydrodynamic field that allows seals to forage and navigate in dark environments. In this work, a deep learning‐assisted underwater triboelectric whisker sensor array (TWSA) is designed for the 3D motion estimation and near‐field perception of unmanned underwater vehicles. Each sensor comprises a high aspect ratio elliptical whisker shaft, four sensing units at the root of the elliptical whisker shaft, and a flexible corrugated joint simulating the skin on the cheek surface of aquatic animals. The TWSA effectively identifies flow velocity and direction in the 3D underwater environments and exhibits a rapid response time of 19 ms, a high sensitivity of 0.2V/ms−1, and a signal‐to‐noise ratio of 58 dB. The device also locks onto the frequency of the upstream wake vortex, achieving a minimal detection accuracy of 81.2%. Moreover, when integrated with an unmanned underwater vehicle, the TWSA can estimate 3D trajectories assisted by a trained deep learning model, with a root mean square error of ≈0.02. Thus, the TWSA‐based assisted perception holds immense potential for enhancing unmanned underwater vehicle near‐field perception and navigation capabilities across a wide range of applications.
This work introduces a deep learning‐assisted triboelectric whisker sensor array (TWSA) for 3D motion estimation and near‐field perception in unmanned underwater vehicles. The TWSA detects flow velocity and direction. It achieves 81.2% accuracy in wake vortex detection and enables precise 3D trajectory estimation with a root mean square error of 0.02, significantly enhancing underwater vehicle navigation capabilities. |
doi_str_mv | 10.1002/admt.202401053 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_admt_202401053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADMT202401053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1743-5aea2e29fa1849d595a28abf8b486cfefcd27db254f47d3fec8fb288491e8ec3</originalsourceid><addsrcrecordid>eNqFkL1OwzAYRS0EElXpyuwXSLGdpHHGqOVPaoUEKbBFjv2ZGhKnsiNVFQuPwDPyJLgUARvTvcM9Z7gInVIypoSwM6HafswISwglaXyABiyepFFG8sfDP_0Yjbx_JoTQnE5izgbodQaw_nh7n4Nw1tinUAvvje9B4dKZuoMGZO-MxA8r41_A4TuwvnO4cE5ssQ7tFkQTsNK0gBddbzr7tQky3Gm8tK2wNtiWVoHbiD4o7mFlZAMn6EiLxsPoO4eovDgvp1fR_ObyelrMI0mzJI5SAYIBy7WgPMlVmqeCcVFrXid8IjVoqVimapYmOslUrEFyXTMethQ4yHiIxnutdJ33DnS1dqYVbltRUu3Oq3bnVT_nBSDfAxvTwPafdVXMFuUv-wnqlXnF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep‐Learning‐Assisted Triboelectric Whisker Sensor Array for Real‐Time Motion Sensing of Unmanned Underwater Vehicle</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Bo ; Dong, Bowen ; Jin, Hao ; Zhu, Peng ; Mu, Zhaoyang ; Li, Yuanzheng ; Liu, Jianhua ; Meng, Zhaochen ; Zhou, Xinyue ; Xu, Peng ; Xu, Minyi</creator><creatorcontrib>Liu, Bo ; Dong, Bowen ; Jin, Hao ; Zhu, Peng ; Mu, Zhaoyang ; Li, Yuanzheng ; Liu, Jianhua ; Meng, Zhaochen ; Zhou, Xinyue ; Xu, Peng ; Xu, Minyi</creatorcontrib><description>Aquatic animals can perceive their surrounding flow fields through highly evolved sensory systems. For instance, a seal whisker array understands the hydrodynamic field that allows seals to forage and navigate in dark environments. In this work, a deep learning‐assisted underwater triboelectric whisker sensor array (TWSA) is designed for the 3D motion estimation and near‐field perception of unmanned underwater vehicles. Each sensor comprises a high aspect ratio elliptical whisker shaft, four sensing units at the root of the elliptical whisker shaft, and a flexible corrugated joint simulating the skin on the cheek surface of aquatic animals. The TWSA effectively identifies flow velocity and direction in the 3D underwater environments and exhibits a rapid response time of 19 ms, a high sensitivity of 0.2V/ms−1, and a signal‐to‐noise ratio of 58 dB. The device also locks onto the frequency of the upstream wake vortex, achieving a minimal detection accuracy of 81.2%. Moreover, when integrated with an unmanned underwater vehicle, the TWSA can estimate 3D trajectories assisted by a trained deep learning model, with a root mean square error of ≈0.02. Thus, the TWSA‐based assisted perception holds immense potential for enhancing unmanned underwater vehicle near‐field perception and navigation capabilities across a wide range of applications.
This work introduces a deep learning‐assisted triboelectric whisker sensor array (TWSA) for 3D motion estimation and near‐field perception in unmanned underwater vehicles. The TWSA detects flow velocity and direction. It achieves 81.2% accuracy in wake vortex detection and enables precise 3D trajectory estimation with a root mean square error of 0.02, significantly enhancing underwater vehicle navigation capabilities.</description><identifier>ISSN: 2365-709X</identifier><identifier>EISSN: 2365-709X</identifier><identifier>DOI: 10.1002/admt.202401053</identifier><language>eng</language><subject>triboelectric nanogenerators ; underwater perception ; whisker sensor array</subject><ispartof>Advanced materials technologies, 2024-09, Vol.10 (3), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1743-5aea2e29fa1849d595a28abf8b486cfefcd27db254f47d3fec8fb288491e8ec3</cites><orcidid>0000-0002-3772-8340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmt.202401053$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmt.202401053$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Dong, Bowen</creatorcontrib><creatorcontrib>Jin, Hao</creatorcontrib><creatorcontrib>Zhu, Peng</creatorcontrib><creatorcontrib>Mu, Zhaoyang</creatorcontrib><creatorcontrib>Li, Yuanzheng</creatorcontrib><creatorcontrib>Liu, Jianhua</creatorcontrib><creatorcontrib>Meng, Zhaochen</creatorcontrib><creatorcontrib>Zhou, Xinyue</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Xu, Minyi</creatorcontrib><title>Deep‐Learning‐Assisted Triboelectric Whisker Sensor Array for Real‐Time Motion Sensing of Unmanned Underwater Vehicle</title><title>Advanced materials technologies</title><description>Aquatic animals can perceive their surrounding flow fields through highly evolved sensory systems. For instance, a seal whisker array understands the hydrodynamic field that allows seals to forage and navigate in dark environments. In this work, a deep learning‐assisted underwater triboelectric whisker sensor array (TWSA) is designed for the 3D motion estimation and near‐field perception of unmanned underwater vehicles. Each sensor comprises a high aspect ratio elliptical whisker shaft, four sensing units at the root of the elliptical whisker shaft, and a flexible corrugated joint simulating the skin on the cheek surface of aquatic animals. The TWSA effectively identifies flow velocity and direction in the 3D underwater environments and exhibits a rapid response time of 19 ms, a high sensitivity of 0.2V/ms−1, and a signal‐to‐noise ratio of 58 dB. The device also locks onto the frequency of the upstream wake vortex, achieving a minimal detection accuracy of 81.2%. Moreover, when integrated with an unmanned underwater vehicle, the TWSA can estimate 3D trajectories assisted by a trained deep learning model, with a root mean square error of ≈0.02. Thus, the TWSA‐based assisted perception holds immense potential for enhancing unmanned underwater vehicle near‐field perception and navigation capabilities across a wide range of applications.
This work introduces a deep learning‐assisted triboelectric whisker sensor array (TWSA) for 3D motion estimation and near‐field perception in unmanned underwater vehicles. The TWSA detects flow velocity and direction. It achieves 81.2% accuracy in wake vortex detection and enables precise 3D trajectory estimation with a root mean square error of 0.02, significantly enhancing underwater vehicle navigation capabilities.</description><subject>triboelectric nanogenerators</subject><subject>underwater perception</subject><subject>whisker sensor array</subject><issn>2365-709X</issn><issn>2365-709X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAYRS0EElXpyuwXSLGdpHHGqOVPaoUEKbBFjv2ZGhKnsiNVFQuPwDPyJLgUARvTvcM9Z7gInVIypoSwM6HafswISwglaXyABiyepFFG8sfDP_0Yjbx_JoTQnE5izgbodQaw_nh7n4Nw1tinUAvvje9B4dKZuoMGZO-MxA8r41_A4TuwvnO4cE5ssQ7tFkQTsNK0gBddbzr7tQky3Gm8tK2wNtiWVoHbiD4o7mFlZAMn6EiLxsPoO4eovDgvp1fR_ObyelrMI0mzJI5SAYIBy7WgPMlVmqeCcVFrXid8IjVoqVimapYmOslUrEFyXTMethQ4yHiIxnutdJ33DnS1dqYVbltRUu3Oq3bnVT_nBSDfAxvTwPafdVXMFuUv-wnqlXnF</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>Liu, Bo</creator><creator>Dong, Bowen</creator><creator>Jin, Hao</creator><creator>Zhu, Peng</creator><creator>Mu, Zhaoyang</creator><creator>Li, Yuanzheng</creator><creator>Liu, Jianhua</creator><creator>Meng, Zhaochen</creator><creator>Zhou, Xinyue</creator><creator>Xu, Peng</creator><creator>Xu, Minyi</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3772-8340</orcidid></search><sort><creationdate>20240920</creationdate><title>Deep‐Learning‐Assisted Triboelectric Whisker Sensor Array for Real‐Time Motion Sensing of Unmanned Underwater Vehicle</title><author>Liu, Bo ; Dong, Bowen ; Jin, Hao ; Zhu, Peng ; Mu, Zhaoyang ; Li, Yuanzheng ; Liu, Jianhua ; Meng, Zhaochen ; Zhou, Xinyue ; Xu, Peng ; Xu, Minyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1743-5aea2e29fa1849d595a28abf8b486cfefcd27db254f47d3fec8fb288491e8ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>triboelectric nanogenerators</topic><topic>underwater perception</topic><topic>whisker sensor array</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Dong, Bowen</creatorcontrib><creatorcontrib>Jin, Hao</creatorcontrib><creatorcontrib>Zhu, Peng</creatorcontrib><creatorcontrib>Mu, Zhaoyang</creatorcontrib><creatorcontrib>Li, Yuanzheng</creatorcontrib><creatorcontrib>Liu, Jianhua</creatorcontrib><creatorcontrib>Meng, Zhaochen</creatorcontrib><creatorcontrib>Zhou, Xinyue</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Xu, Minyi</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced materials technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Bo</au><au>Dong, Bowen</au><au>Jin, Hao</au><au>Zhu, Peng</au><au>Mu, Zhaoyang</au><au>Li, Yuanzheng</au><au>Liu, Jianhua</au><au>Meng, Zhaochen</au><au>Zhou, Xinyue</au><au>Xu, Peng</au><au>Xu, Minyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep‐Learning‐Assisted Triboelectric Whisker Sensor Array for Real‐Time Motion Sensing of Unmanned Underwater Vehicle</atitle><jtitle>Advanced materials technologies</jtitle><date>2024-09-20</date><risdate>2024</risdate><volume>10</volume><issue>3</issue><epage>n/a</epage><issn>2365-709X</issn><eissn>2365-709X</eissn><abstract>Aquatic animals can perceive their surrounding flow fields through highly evolved sensory systems. For instance, a seal whisker array understands the hydrodynamic field that allows seals to forage and navigate in dark environments. In this work, a deep learning‐assisted underwater triboelectric whisker sensor array (TWSA) is designed for the 3D motion estimation and near‐field perception of unmanned underwater vehicles. Each sensor comprises a high aspect ratio elliptical whisker shaft, four sensing units at the root of the elliptical whisker shaft, and a flexible corrugated joint simulating the skin on the cheek surface of aquatic animals. The TWSA effectively identifies flow velocity and direction in the 3D underwater environments and exhibits a rapid response time of 19 ms, a high sensitivity of 0.2V/ms−1, and a signal‐to‐noise ratio of 58 dB. The device also locks onto the frequency of the upstream wake vortex, achieving a minimal detection accuracy of 81.2%. Moreover, when integrated with an unmanned underwater vehicle, the TWSA can estimate 3D trajectories assisted by a trained deep learning model, with a root mean square error of ≈0.02. Thus, the TWSA‐based assisted perception holds immense potential for enhancing unmanned underwater vehicle near‐field perception and navigation capabilities across a wide range of applications.
This work introduces a deep learning‐assisted triboelectric whisker sensor array (TWSA) for 3D motion estimation and near‐field perception in unmanned underwater vehicles. The TWSA detects flow velocity and direction. It achieves 81.2% accuracy in wake vortex detection and enables precise 3D trajectory estimation with a root mean square error of 0.02, significantly enhancing underwater vehicle navigation capabilities.</abstract><doi>10.1002/admt.202401053</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3772-8340</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2365-709X |
ispartof | Advanced materials technologies, 2024-09, Vol.10 (3), p.n/a |
issn | 2365-709X 2365-709X |
language | eng |
recordid | cdi_crossref_primary_10_1002_admt_202401053 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | triboelectric nanogenerators underwater perception whisker sensor array |
title | Deep‐Learning‐Assisted Triboelectric Whisker Sensor Array for Real‐Time Motion Sensing of Unmanned Underwater Vehicle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%E2%80%90Learning%E2%80%90Assisted%20Triboelectric%20Whisker%20Sensor%20Array%20for%20Real%E2%80%90Time%20Motion%20Sensing%20of%20Unmanned%20Underwater%20Vehicle&rft.jtitle=Advanced%20materials%20technologies&rft.au=Liu,%20Bo&rft.date=2024-09-20&rft.volume=10&rft.issue=3&rft.epage=n/a&rft.issn=2365-709X&rft.eissn=2365-709X&rft_id=info:doi/10.1002/admt.202401053&rft_dat=%3Cwiley_cross%3EADMT202401053%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |