Ultrasound‐Driven Highly Stable Implantable Triboelectric Nanogenerator with Human‐Tissue Acoustic Impedance‐Matched Polyether Ether Ketone
Implantable electrical neurostimulators offer a promising avenue for treating neurological disorders. However, their dependency on a finite battery life limits their long‐term utility. Emerging transcutaneous ultrasound‐driven triboelectric nanogenerator (TENG) techniques provide solutions for conve...
Gespeichert in:
Veröffentlicht in: | Advanced materials technologies 2024-11, Vol.9 (21), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Advanced materials technologies |
container_volume | 9 |
creator | Jeon, Sera Meng, Xiangchun Rubab, Najaf Kim, Dabin Mo, Hyeon Xiao, Xiao Park, Min Jae Cho, Daniel Sanghyun Kim, Seong Min Choi, Byung‐Ok Kim, Sang‐Woo |
description | Implantable electrical neurostimulators offer a promising avenue for treating neurological disorders. However, their dependency on a finite battery life limits their long‐term utility. Emerging transcutaneous ultrasound‐driven triboelectric nanogenerator (TENG) techniques provide solutions for converting external ultrasound waves into internal electricity. This study proposes an implantable ultrasound‐driven TENG (IU‐TENG) using polyether ether ketone (PEEK) for its exceptional stability inside a human body and acoustic impedance compatibility with human tissues. This IU‐TENG remarkably surpasses traditional titanium‐based encapsulation, resulting in a 99.94% efficiency in ultrasound transmission. In addition, PEEK contains numerous electron‐donating functional groups, making it suitable for TENG applications, particularly as a positive triboelectric layer. The device exhibits robust voltage outputs, reaching up to 11.50 and 8.75 V in water and in vivo, respectively, under body‐safe ultrasound intensities. Moreover, its ability to sustain a stable electrical output for over 300 min emphasizes the durability and mechanical resilience of PEEK. In vivo mouse models and ex vivo porcine tissue trials demonstrate the effectiveness of the IU‐TENG in nerve stimulation, showing its potential in medical treatments, enhancing the functionality and longevity of implantable medical devices.
Implantable ultrasound‐driven triboelectric nanogenerator (IU‐TENG) is demonstrated, utilizing polyether ether ketone (PEEK) as an encapsulation and triboelectric layer for outstanding stability and tissue‐matched acoustic impedance. This innovative IU‐TENG achieves 99.94% efficiency in ultrasound transmission and sustains a stable electrical output for over 300 min under the safe ultrasound closure. This study provides comprehensive guidelines for high‐efficiency, durable, and sustainable implantable medical devices. |
doi_str_mv | 10.1002/admt.202400317 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_admt_202400317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADMT202400317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2147-1f1a1f10753461cd3336979f812b2bc29358c611090769c5ec3c5b58c2a48e493</originalsourceid><addsrcrecordid>eNqFUMtOwzAQjBBIVKVXzv6BFD_y8rFqC61oAYlU4hY5zqYJSuLKdqhy4xPgF_kSUoqAG4fdHc3OzGEc55LgMcGYXomstmOKqYcxI-GJM6As8N0Q86fTP_jcGRnzjDEmnAQsogPnfVNZLYxqm-zj9W2myxdo0KLcFlWHHq1IK0DLeleJ5ohjXaYKKpBWlxLdiUZtoQEtrNJoX9oCLdpaNH1SXBrTAppI1RrbS_sQyEQjof-thZUFZOhBVR3YAjSaf-1bsKqBC-csF5WB0fcdOpvreTxduKv7m-V0snIlJV7okpyIfnDoMy8gMmOMBTzkeURoSlNJOfMjGRCCOQ4DLn2QTPppz1HhReBxNnTGx1yplTEa8mSny1roLiE4OXSaHDpNfjrtDfxo2JcVdP-ok8lsHf96PwEloYC5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrasound‐Driven Highly Stable Implantable Triboelectric Nanogenerator with Human‐Tissue Acoustic Impedance‐Matched Polyether Ether Ketone</title><source>Access via Wiley Online Library</source><creator>Jeon, Sera ; Meng, Xiangchun ; Rubab, Najaf ; Kim, Dabin ; Mo, Hyeon ; Xiao, Xiao ; Park, Min Jae ; Cho, Daniel Sanghyun ; Kim, Seong Min ; Choi, Byung‐Ok ; Kim, Sang‐Woo</creator><creatorcontrib>Jeon, Sera ; Meng, Xiangchun ; Rubab, Najaf ; Kim, Dabin ; Mo, Hyeon ; Xiao, Xiao ; Park, Min Jae ; Cho, Daniel Sanghyun ; Kim, Seong Min ; Choi, Byung‐Ok ; Kim, Sang‐Woo</creatorcontrib><description>Implantable electrical neurostimulators offer a promising avenue for treating neurological disorders. However, their dependency on a finite battery life limits their long‐term utility. Emerging transcutaneous ultrasound‐driven triboelectric nanogenerator (TENG) techniques provide solutions for converting external ultrasound waves into internal electricity. This study proposes an implantable ultrasound‐driven TENG (IU‐TENG) using polyether ether ketone (PEEK) for its exceptional stability inside a human body and acoustic impedance compatibility with human tissues. This IU‐TENG remarkably surpasses traditional titanium‐based encapsulation, resulting in a 99.94% efficiency in ultrasound transmission. In addition, PEEK contains numerous electron‐donating functional groups, making it suitable for TENG applications, particularly as a positive triboelectric layer. The device exhibits robust voltage outputs, reaching up to 11.50 and 8.75 V in water and in vivo, respectively, under body‐safe ultrasound intensities. Moreover, its ability to sustain a stable electrical output for over 300 min emphasizes the durability and mechanical resilience of PEEK. In vivo mouse models and ex vivo porcine tissue trials demonstrate the effectiveness of the IU‐TENG in nerve stimulation, showing its potential in medical treatments, enhancing the functionality and longevity of implantable medical devices.
Implantable ultrasound‐driven triboelectric nanogenerator (IU‐TENG) is demonstrated, utilizing polyether ether ketone (PEEK) as an encapsulation and triboelectric layer for outstanding stability and tissue‐matched acoustic impedance. This innovative IU‐TENG achieves 99.94% efficiency in ultrasound transmission and sustains a stable electrical output for over 300 min under the safe ultrasound closure. This study provides comprehensive guidelines for high‐efficiency, durable, and sustainable implantable medical devices.</description><identifier>ISSN: 2365-709X</identifier><identifier>EISSN: 2365-709X</identifier><identifier>DOI: 10.1002/admt.202400317</identifier><language>eng</language><subject>acoustic impedance ; implantable medical devices ; nerve stimulation ; polyether ether ketone ; triboelectric nanogenerator</subject><ispartof>Advanced materials technologies, 2024-11, Vol.9 (21), p.n/a</ispartof><rights>2024 The Author(s). Advanced Materials Technologies published by Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2147-1f1a1f10753461cd3336979f812b2bc29358c611090769c5ec3c5b58c2a48e493</cites><orcidid>0000-0002-0079-5806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmt.202400317$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmt.202400317$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Jeon, Sera</creatorcontrib><creatorcontrib>Meng, Xiangchun</creatorcontrib><creatorcontrib>Rubab, Najaf</creatorcontrib><creatorcontrib>Kim, Dabin</creatorcontrib><creatorcontrib>Mo, Hyeon</creatorcontrib><creatorcontrib>Xiao, Xiao</creatorcontrib><creatorcontrib>Park, Min Jae</creatorcontrib><creatorcontrib>Cho, Daniel Sanghyun</creatorcontrib><creatorcontrib>Kim, Seong Min</creatorcontrib><creatorcontrib>Choi, Byung‐Ok</creatorcontrib><creatorcontrib>Kim, Sang‐Woo</creatorcontrib><title>Ultrasound‐Driven Highly Stable Implantable Triboelectric Nanogenerator with Human‐Tissue Acoustic Impedance‐Matched Polyether Ether Ketone</title><title>Advanced materials technologies</title><description>Implantable electrical neurostimulators offer a promising avenue for treating neurological disorders. However, their dependency on a finite battery life limits their long‐term utility. Emerging transcutaneous ultrasound‐driven triboelectric nanogenerator (TENG) techniques provide solutions for converting external ultrasound waves into internal electricity. This study proposes an implantable ultrasound‐driven TENG (IU‐TENG) using polyether ether ketone (PEEK) for its exceptional stability inside a human body and acoustic impedance compatibility with human tissues. This IU‐TENG remarkably surpasses traditional titanium‐based encapsulation, resulting in a 99.94% efficiency in ultrasound transmission. In addition, PEEK contains numerous electron‐donating functional groups, making it suitable for TENG applications, particularly as a positive triboelectric layer. The device exhibits robust voltage outputs, reaching up to 11.50 and 8.75 V in water and in vivo, respectively, under body‐safe ultrasound intensities. Moreover, its ability to sustain a stable electrical output for over 300 min emphasizes the durability and mechanical resilience of PEEK. In vivo mouse models and ex vivo porcine tissue trials demonstrate the effectiveness of the IU‐TENG in nerve stimulation, showing its potential in medical treatments, enhancing the functionality and longevity of implantable medical devices.
Implantable ultrasound‐driven triboelectric nanogenerator (IU‐TENG) is demonstrated, utilizing polyether ether ketone (PEEK) as an encapsulation and triboelectric layer for outstanding stability and tissue‐matched acoustic impedance. This innovative IU‐TENG achieves 99.94% efficiency in ultrasound transmission and sustains a stable electrical output for over 300 min under the safe ultrasound closure. This study provides comprehensive guidelines for high‐efficiency, durable, and sustainable implantable medical devices.</description><subject>acoustic impedance</subject><subject>implantable medical devices</subject><subject>nerve stimulation</subject><subject>polyether ether ketone</subject><subject>triboelectric nanogenerator</subject><issn>2365-709X</issn><issn>2365-709X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFUMtOwzAQjBBIVKVXzv6BFD_y8rFqC61oAYlU4hY5zqYJSuLKdqhy4xPgF_kSUoqAG4fdHc3OzGEc55LgMcGYXomstmOKqYcxI-GJM6As8N0Q86fTP_jcGRnzjDEmnAQsogPnfVNZLYxqm-zj9W2myxdo0KLcFlWHHq1IK0DLeleJ5ohjXaYKKpBWlxLdiUZtoQEtrNJoX9oCLdpaNH1SXBrTAppI1RrbS_sQyEQjof-thZUFZOhBVR3YAjSaf-1bsKqBC-csF5WB0fcdOpvreTxduKv7m-V0snIlJV7okpyIfnDoMy8gMmOMBTzkeURoSlNJOfMjGRCCOQ4DLn2QTPppz1HhReBxNnTGx1yplTEa8mSny1roLiE4OXSaHDpNfjrtDfxo2JcVdP-ok8lsHf96PwEloYC5</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Jeon, Sera</creator><creator>Meng, Xiangchun</creator><creator>Rubab, Najaf</creator><creator>Kim, Dabin</creator><creator>Mo, Hyeon</creator><creator>Xiao, Xiao</creator><creator>Park, Min Jae</creator><creator>Cho, Daniel Sanghyun</creator><creator>Kim, Seong Min</creator><creator>Choi, Byung‐Ok</creator><creator>Kim, Sang‐Woo</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0079-5806</orcidid></search><sort><creationdate>20241101</creationdate><title>Ultrasound‐Driven Highly Stable Implantable Triboelectric Nanogenerator with Human‐Tissue Acoustic Impedance‐Matched Polyether Ether Ketone</title><author>Jeon, Sera ; Meng, Xiangchun ; Rubab, Najaf ; Kim, Dabin ; Mo, Hyeon ; Xiao, Xiao ; Park, Min Jae ; Cho, Daniel Sanghyun ; Kim, Seong Min ; Choi, Byung‐Ok ; Kim, Sang‐Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2147-1f1a1f10753461cd3336979f812b2bc29358c611090769c5ec3c5b58c2a48e493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>acoustic impedance</topic><topic>implantable medical devices</topic><topic>nerve stimulation</topic><topic>polyether ether ketone</topic><topic>triboelectric nanogenerator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Sera</creatorcontrib><creatorcontrib>Meng, Xiangchun</creatorcontrib><creatorcontrib>Rubab, Najaf</creatorcontrib><creatorcontrib>Kim, Dabin</creatorcontrib><creatorcontrib>Mo, Hyeon</creatorcontrib><creatorcontrib>Xiao, Xiao</creatorcontrib><creatorcontrib>Park, Min Jae</creatorcontrib><creatorcontrib>Cho, Daniel Sanghyun</creatorcontrib><creatorcontrib>Kim, Seong Min</creatorcontrib><creatorcontrib>Choi, Byung‐Ok</creatorcontrib><creatorcontrib>Kim, Sang‐Woo</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><jtitle>Advanced materials technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Sera</au><au>Meng, Xiangchun</au><au>Rubab, Najaf</au><au>Kim, Dabin</au><au>Mo, Hyeon</au><au>Xiao, Xiao</au><au>Park, Min Jae</au><au>Cho, Daniel Sanghyun</au><au>Kim, Seong Min</au><au>Choi, Byung‐Ok</au><au>Kim, Sang‐Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasound‐Driven Highly Stable Implantable Triboelectric Nanogenerator with Human‐Tissue Acoustic Impedance‐Matched Polyether Ether Ketone</atitle><jtitle>Advanced materials technologies</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>9</volume><issue>21</issue><epage>n/a</epage><issn>2365-709X</issn><eissn>2365-709X</eissn><abstract>Implantable electrical neurostimulators offer a promising avenue for treating neurological disorders. However, their dependency on a finite battery life limits their long‐term utility. Emerging transcutaneous ultrasound‐driven triboelectric nanogenerator (TENG) techniques provide solutions for converting external ultrasound waves into internal electricity. This study proposes an implantable ultrasound‐driven TENG (IU‐TENG) using polyether ether ketone (PEEK) for its exceptional stability inside a human body and acoustic impedance compatibility with human tissues. This IU‐TENG remarkably surpasses traditional titanium‐based encapsulation, resulting in a 99.94% efficiency in ultrasound transmission. In addition, PEEK contains numerous electron‐donating functional groups, making it suitable for TENG applications, particularly as a positive triboelectric layer. The device exhibits robust voltage outputs, reaching up to 11.50 and 8.75 V in water and in vivo, respectively, under body‐safe ultrasound intensities. Moreover, its ability to sustain a stable electrical output for over 300 min emphasizes the durability and mechanical resilience of PEEK. In vivo mouse models and ex vivo porcine tissue trials demonstrate the effectiveness of the IU‐TENG in nerve stimulation, showing its potential in medical treatments, enhancing the functionality and longevity of implantable medical devices.
Implantable ultrasound‐driven triboelectric nanogenerator (IU‐TENG) is demonstrated, utilizing polyether ether ketone (PEEK) as an encapsulation and triboelectric layer for outstanding stability and tissue‐matched acoustic impedance. This innovative IU‐TENG achieves 99.94% efficiency in ultrasound transmission and sustains a stable electrical output for over 300 min under the safe ultrasound closure. This study provides comprehensive guidelines for high‐efficiency, durable, and sustainable implantable medical devices.</abstract><doi>10.1002/admt.202400317</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0079-5806</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2365-709X |
ispartof | Advanced materials technologies, 2024-11, Vol.9 (21), p.n/a |
issn | 2365-709X 2365-709X |
language | eng |
recordid | cdi_crossref_primary_10_1002_admt_202400317 |
source | Access via Wiley Online Library |
subjects | acoustic impedance implantable medical devices nerve stimulation polyether ether ketone triboelectric nanogenerator |
title | Ultrasound‐Driven Highly Stable Implantable Triboelectric Nanogenerator with Human‐Tissue Acoustic Impedance‐Matched Polyether Ether Ketone |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A36%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasound%E2%80%90Driven%20Highly%20Stable%20Implantable%20Triboelectric%20Nanogenerator%20with%20Human%E2%80%90Tissue%20Acoustic%20Impedance%E2%80%90Matched%20Polyether%20Ether%20Ketone&rft.jtitle=Advanced%20materials%20technologies&rft.au=Jeon,%20Sera&rft.date=2024-11-01&rft.volume=9&rft.issue=21&rft.epage=n/a&rft.issn=2365-709X&rft.eissn=2365-709X&rft_id=info:doi/10.1002/admt.202400317&rft_dat=%3Cwiley_cross%3EADMT202400317%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |