3D Printing Assisted‐Fabrication of Low‐Temperature Strain Sensors with Large Working Range and Outstanding Stability
Recently, low‐temperature wearable strain sensors, referring to those working at sub‐zero temperatures, are attracting increasing attentions. However, the fabrication of low‐temperature strain sensors with large working ranges, high sensitivity, and good stability remains a major challenge. In this...
Gespeichert in:
Veröffentlicht in: | Advanced materials technologies 2023-11, Vol.8 (21) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Advanced materials technologies |
container_volume | 8 |
creator | Niu, Shicong He, Shiyu Chen, Yu Zhu, Zhihao Chang, Xueting Yang, Chuanxiao Li, Junfeng Jiang, Yingchang Wang, Dongsheng Zhu, Yanqiu Sun, Shibin |
description | Recently, low‐temperature wearable strain sensors, referring to those working at sub‐zero temperatures, are attracting increasing attentions. However, the fabrication of low‐temperature strain sensors with large working ranges, high sensitivity, and good stability remains a major challenge. In this study, a novel low‐temperature wearable strain sensor is fabricated by depositing the silver nanoplates (Ag NPs)/carbon nanotubes (CNTs) composite onto a cured silicone (DS) substrate that is constructed by using a 3D printing technology. The synergistic effect of the Ag NPs with positive temperature coefficient of resistance (TCR) and the CNTs with negative TCR enable the Ag NPs/CNTs/DS strain sensor's TCR value (−1.16 × 10
−5
K
−1
) to approach zero. The Ag NPs/CNTs/DS strain sensor demonstrates a high gauge factor over a large working range (0–100%) and fast response and recovery rates. Simultaneously, the Ag NPs/CNTs/DS strain sensor displays outstanding reproducibility and long‐term stability at −40 °C as well as excellent temperature cycling resistance under cyclic temperature of −40 to 60 °C. The Ag NPs/CNTs/DS strain sensor is further validated by incorporating into a wireless sensing system for remotely monitoring various human activities at −40 °C. This work provides wearable strain sensors for monitoring human‐machine interaction under low‐temperature condition. |
doi_str_mv | 10.1002/admt.202300867 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_admt_202300867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_admt_202300867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-b326cf718d3cbdfb9a2c7e01f3bb081f26fd7646358cea31010044236f0ffadc3</originalsourceid><addsrcrecordid>eNpNkMtKAzEYhYMoWGq3rvMCU_8kbWZmWapVYaBiK7obcq3RNlOSlDI7H8Fn9EmcQRFX57I4cD6ELgmMCQC9EnqXxhQoAyh4foIGlPFplkP5cvrPn6NRjG8AQErCWUEHqGXX-CE4n5zf4FmMLiajvz4-F0IGp0RyjceNxVVz7Mq12e1NEOkQDF6lIJzHK-NjEyI-uvSKKxE2Bj834b1fexS-S8JrvDykmDrTt6skpNu61F6gMyu20Yx-dYieFjfr-V1WLW_v57MqUzQvUyYZ5crmpNBMSW1lKajKDRDLpISCWMqtzvmEs2mhjGAEOhyTSffYgrVCKzZE459dFZoYg7H1PridCG1NoO7Z1T27-o8d-waObmbx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3D Printing Assisted‐Fabrication of Low‐Temperature Strain Sensors with Large Working Range and Outstanding Stability</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Niu, Shicong ; He, Shiyu ; Chen, Yu ; Zhu, Zhihao ; Chang, Xueting ; Yang, Chuanxiao ; Li, Junfeng ; Jiang, Yingchang ; Wang, Dongsheng ; Zhu, Yanqiu ; Sun, Shibin</creator><creatorcontrib>Niu, Shicong ; He, Shiyu ; Chen, Yu ; Zhu, Zhihao ; Chang, Xueting ; Yang, Chuanxiao ; Li, Junfeng ; Jiang, Yingchang ; Wang, Dongsheng ; Zhu, Yanqiu ; Sun, Shibin</creatorcontrib><description>Recently, low‐temperature wearable strain sensors, referring to those working at sub‐zero temperatures, are attracting increasing attentions. However, the fabrication of low‐temperature strain sensors with large working ranges, high sensitivity, and good stability remains a major challenge. In this study, a novel low‐temperature wearable strain sensor is fabricated by depositing the silver nanoplates (Ag NPs)/carbon nanotubes (CNTs) composite onto a cured silicone (DS) substrate that is constructed by using a 3D printing technology. The synergistic effect of the Ag NPs with positive temperature coefficient of resistance (TCR) and the CNTs with negative TCR enable the Ag NPs/CNTs/DS strain sensor's TCR value (−1.16 × 10
−5
K
−1
) to approach zero. The Ag NPs/CNTs/DS strain sensor demonstrates a high gauge factor over a large working range (0–100%) and fast response and recovery rates. Simultaneously, the Ag NPs/CNTs/DS strain sensor displays outstanding reproducibility and long‐term stability at −40 °C as well as excellent temperature cycling resistance under cyclic temperature of −40 to 60 °C. The Ag NPs/CNTs/DS strain sensor is further validated by incorporating into a wireless sensing system for remotely monitoring various human activities at −40 °C. This work provides wearable strain sensors for monitoring human‐machine interaction under low‐temperature condition.</description><identifier>ISSN: 2365-709X</identifier><identifier>EISSN: 2365-709X</identifier><identifier>DOI: 10.1002/admt.202300867</identifier><language>eng</language><ispartof>Advanced materials technologies, 2023-11, Vol.8 (21)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-b326cf718d3cbdfb9a2c7e01f3bb081f26fd7646358cea31010044236f0ffadc3</citedby><cites>FETCH-LOGICAL-c279t-b326cf718d3cbdfb9a2c7e01f3bb081f26fd7646358cea31010044236f0ffadc3</cites><orcidid>0000-0001-9040-5105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Niu, Shicong</creatorcontrib><creatorcontrib>He, Shiyu</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Zhu, Zhihao</creatorcontrib><creatorcontrib>Chang, Xueting</creatorcontrib><creatorcontrib>Yang, Chuanxiao</creatorcontrib><creatorcontrib>Li, Junfeng</creatorcontrib><creatorcontrib>Jiang, Yingchang</creatorcontrib><creatorcontrib>Wang, Dongsheng</creatorcontrib><creatorcontrib>Zhu, Yanqiu</creatorcontrib><creatorcontrib>Sun, Shibin</creatorcontrib><title>3D Printing Assisted‐Fabrication of Low‐Temperature Strain Sensors with Large Working Range and Outstanding Stability</title><title>Advanced materials technologies</title><description>Recently, low‐temperature wearable strain sensors, referring to those working at sub‐zero temperatures, are attracting increasing attentions. However, the fabrication of low‐temperature strain sensors with large working ranges, high sensitivity, and good stability remains a major challenge. In this study, a novel low‐temperature wearable strain sensor is fabricated by depositing the silver nanoplates (Ag NPs)/carbon nanotubes (CNTs) composite onto a cured silicone (DS) substrate that is constructed by using a 3D printing technology. The synergistic effect of the Ag NPs with positive temperature coefficient of resistance (TCR) and the CNTs with negative TCR enable the Ag NPs/CNTs/DS strain sensor's TCR value (−1.16 × 10
−5
K
−1
) to approach zero. The Ag NPs/CNTs/DS strain sensor demonstrates a high gauge factor over a large working range (0–100%) and fast response and recovery rates. Simultaneously, the Ag NPs/CNTs/DS strain sensor displays outstanding reproducibility and long‐term stability at −40 °C as well as excellent temperature cycling resistance under cyclic temperature of −40 to 60 °C. The Ag NPs/CNTs/DS strain sensor is further validated by incorporating into a wireless sensing system for remotely monitoring various human activities at −40 °C. This work provides wearable strain sensors for monitoring human‐machine interaction under low‐temperature condition.</description><issn>2365-709X</issn><issn>2365-709X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkMtKAzEYhYMoWGq3rvMCU_8kbWZmWapVYaBiK7obcq3RNlOSlDI7H8Fn9EmcQRFX57I4cD6ELgmMCQC9EnqXxhQoAyh4foIGlPFplkP5cvrPn6NRjG8AQErCWUEHqGXX-CE4n5zf4FmMLiajvz4-F0IGp0RyjceNxVVz7Mq12e1NEOkQDF6lIJzHK-NjEyI-uvSKKxE2Bj834b1fexS-S8JrvDykmDrTt6skpNu61F6gMyu20Yx-dYieFjfr-V1WLW_v57MqUzQvUyYZ5crmpNBMSW1lKajKDRDLpISCWMqtzvmEs2mhjGAEOhyTSffYgrVCKzZE459dFZoYg7H1PridCG1NoO7Z1T27-o8d-waObmbx</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Niu, Shicong</creator><creator>He, Shiyu</creator><creator>Chen, Yu</creator><creator>Zhu, Zhihao</creator><creator>Chang, Xueting</creator><creator>Yang, Chuanxiao</creator><creator>Li, Junfeng</creator><creator>Jiang, Yingchang</creator><creator>Wang, Dongsheng</creator><creator>Zhu, Yanqiu</creator><creator>Sun, Shibin</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9040-5105</orcidid></search><sort><creationdate>20231101</creationdate><title>3D Printing Assisted‐Fabrication of Low‐Temperature Strain Sensors with Large Working Range and Outstanding Stability</title><author>Niu, Shicong ; He, Shiyu ; Chen, Yu ; Zhu, Zhihao ; Chang, Xueting ; Yang, Chuanxiao ; Li, Junfeng ; Jiang, Yingchang ; Wang, Dongsheng ; Zhu, Yanqiu ; Sun, Shibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-b326cf718d3cbdfb9a2c7e01f3bb081f26fd7646358cea31010044236f0ffadc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Shicong</creatorcontrib><creatorcontrib>He, Shiyu</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Zhu, Zhihao</creatorcontrib><creatorcontrib>Chang, Xueting</creatorcontrib><creatorcontrib>Yang, Chuanxiao</creatorcontrib><creatorcontrib>Li, Junfeng</creatorcontrib><creatorcontrib>Jiang, Yingchang</creatorcontrib><creatorcontrib>Wang, Dongsheng</creatorcontrib><creatorcontrib>Zhu, Yanqiu</creatorcontrib><creatorcontrib>Sun, Shibin</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced materials technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Shicong</au><au>He, Shiyu</au><au>Chen, Yu</au><au>Zhu, Zhihao</au><au>Chang, Xueting</au><au>Yang, Chuanxiao</au><au>Li, Junfeng</au><au>Jiang, Yingchang</au><au>Wang, Dongsheng</au><au>Zhu, Yanqiu</au><au>Sun, Shibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printing Assisted‐Fabrication of Low‐Temperature Strain Sensors with Large Working Range and Outstanding Stability</atitle><jtitle>Advanced materials technologies</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>8</volume><issue>21</issue><issn>2365-709X</issn><eissn>2365-709X</eissn><abstract>Recently, low‐temperature wearable strain sensors, referring to those working at sub‐zero temperatures, are attracting increasing attentions. However, the fabrication of low‐temperature strain sensors with large working ranges, high sensitivity, and good stability remains a major challenge. In this study, a novel low‐temperature wearable strain sensor is fabricated by depositing the silver nanoplates (Ag NPs)/carbon nanotubes (CNTs) composite onto a cured silicone (DS) substrate that is constructed by using a 3D printing technology. The synergistic effect of the Ag NPs with positive temperature coefficient of resistance (TCR) and the CNTs with negative TCR enable the Ag NPs/CNTs/DS strain sensor's TCR value (−1.16 × 10
−5
K
−1
) to approach zero. The Ag NPs/CNTs/DS strain sensor demonstrates a high gauge factor over a large working range (0–100%) and fast response and recovery rates. Simultaneously, the Ag NPs/CNTs/DS strain sensor displays outstanding reproducibility and long‐term stability at −40 °C as well as excellent temperature cycling resistance under cyclic temperature of −40 to 60 °C. The Ag NPs/CNTs/DS strain sensor is further validated by incorporating into a wireless sensing system for remotely monitoring various human activities at −40 °C. This work provides wearable strain sensors for monitoring human‐machine interaction under low‐temperature condition.</abstract><doi>10.1002/admt.202300867</doi><orcidid>https://orcid.org/0000-0001-9040-5105</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2365-709X |
ispartof | Advanced materials technologies, 2023-11, Vol.8 (21) |
issn | 2365-709X 2365-709X |
language | eng |
recordid | cdi_crossref_primary_10_1002_admt_202300867 |
source | Wiley Online Library Journals Frontfile Complete |
title | 3D Printing Assisted‐Fabrication of Low‐Temperature Strain Sensors with Large Working Range and Outstanding Stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T21%3A34%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printing%20Assisted%E2%80%90Fabrication%20of%20Low%E2%80%90Temperature%20Strain%20Sensors%20with%20Large%20Working%20Range%20and%20Outstanding%20Stability&rft.jtitle=Advanced%20materials%20technologies&rft.au=Niu,%20Shicong&rft.date=2023-11-01&rft.volume=8&rft.issue=21&rft.issn=2365-709X&rft.eissn=2365-709X&rft_id=info:doi/10.1002/admt.202300867&rft_dat=%3Ccrossref%3E10_1002_admt_202300867%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |