3D Printing Assisted‐Fabrication of Low‐Temperature Strain Sensors with Large Working Range and Outstanding Stability

Recently, low‐temperature wearable strain sensors, referring to those working at sub‐zero temperatures, are attracting increasing attentions. However, the fabrication of low‐temperature strain sensors with large working ranges, high sensitivity, and good stability remains a major challenge. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials technologies 2023-11, Vol.8 (21)
Hauptverfasser: Niu, Shicong, He, Shiyu, Chen, Yu, Zhu, Zhihao, Chang, Xueting, Yang, Chuanxiao, Li, Junfeng, Jiang, Yingchang, Wang, Dongsheng, Zhu, Yanqiu, Sun, Shibin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title Advanced materials technologies
container_volume 8
creator Niu, Shicong
He, Shiyu
Chen, Yu
Zhu, Zhihao
Chang, Xueting
Yang, Chuanxiao
Li, Junfeng
Jiang, Yingchang
Wang, Dongsheng
Zhu, Yanqiu
Sun, Shibin
description Recently, low‐temperature wearable strain sensors, referring to those working at sub‐zero temperatures, are attracting increasing attentions. However, the fabrication of low‐temperature strain sensors with large working ranges, high sensitivity, and good stability remains a major challenge. In this study, a novel low‐temperature wearable strain sensor is fabricated by depositing the silver nanoplates (Ag NPs)/carbon nanotubes (CNTs) composite onto a cured silicone (DS) substrate that is constructed by using a 3D printing technology. The synergistic effect of the Ag NPs with positive temperature coefficient of resistance (TCR) and the CNTs with negative TCR enable the Ag NPs/CNTs/DS strain sensor's TCR value (−1.16 × 10 −5 K −1 ) to approach zero. The Ag NPs/CNTs/DS strain sensor demonstrates a high gauge factor over a large working range (0–100%) and fast response and recovery rates. Simultaneously, the Ag NPs/CNTs/DS strain sensor displays outstanding reproducibility and long‐term stability at −40 °C as well as excellent temperature cycling resistance under cyclic temperature of −40 to 60 °C. The Ag NPs/CNTs/DS strain sensor is further validated by incorporating into a wireless sensing system for remotely monitoring various human activities at −40 °C. This work provides wearable strain sensors for monitoring human‐machine interaction under low‐temperature condition.
doi_str_mv 10.1002/admt.202300867
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_admt_202300867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_admt_202300867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-b326cf718d3cbdfb9a2c7e01f3bb081f26fd7646358cea31010044236f0ffadc3</originalsourceid><addsrcrecordid>eNpNkMtKAzEYhYMoWGq3rvMCU_8kbWZmWapVYaBiK7obcq3RNlOSlDI7H8Fn9EmcQRFX57I4cD6ELgmMCQC9EnqXxhQoAyh4foIGlPFplkP5cvrPn6NRjG8AQErCWUEHqGXX-CE4n5zf4FmMLiajvz4-F0IGp0RyjceNxVVz7Mq12e1NEOkQDF6lIJzHK-NjEyI-uvSKKxE2Bj834b1fexS-S8JrvDykmDrTt6skpNu61F6gMyu20Yx-dYieFjfr-V1WLW_v57MqUzQvUyYZ5crmpNBMSW1lKajKDRDLpISCWMqtzvmEs2mhjGAEOhyTSffYgrVCKzZE459dFZoYg7H1PridCG1NoO7Z1T27-o8d-waObmbx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3D Printing Assisted‐Fabrication of Low‐Temperature Strain Sensors with Large Working Range and Outstanding Stability</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Niu, Shicong ; He, Shiyu ; Chen, Yu ; Zhu, Zhihao ; Chang, Xueting ; Yang, Chuanxiao ; Li, Junfeng ; Jiang, Yingchang ; Wang, Dongsheng ; Zhu, Yanqiu ; Sun, Shibin</creator><creatorcontrib>Niu, Shicong ; He, Shiyu ; Chen, Yu ; Zhu, Zhihao ; Chang, Xueting ; Yang, Chuanxiao ; Li, Junfeng ; Jiang, Yingchang ; Wang, Dongsheng ; Zhu, Yanqiu ; Sun, Shibin</creatorcontrib><description>Recently, low‐temperature wearable strain sensors, referring to those working at sub‐zero temperatures, are attracting increasing attentions. However, the fabrication of low‐temperature strain sensors with large working ranges, high sensitivity, and good stability remains a major challenge. In this study, a novel low‐temperature wearable strain sensor is fabricated by depositing the silver nanoplates (Ag NPs)/carbon nanotubes (CNTs) composite onto a cured silicone (DS) substrate that is constructed by using a 3D printing technology. The synergistic effect of the Ag NPs with positive temperature coefficient of resistance (TCR) and the CNTs with negative TCR enable the Ag NPs/CNTs/DS strain sensor's TCR value (−1.16 × 10 −5 K −1 ) to approach zero. The Ag NPs/CNTs/DS strain sensor demonstrates a high gauge factor over a large working range (0–100%) and fast response and recovery rates. Simultaneously, the Ag NPs/CNTs/DS strain sensor displays outstanding reproducibility and long‐term stability at −40 °C as well as excellent temperature cycling resistance under cyclic temperature of −40 to 60 °C. The Ag NPs/CNTs/DS strain sensor is further validated by incorporating into a wireless sensing system for remotely monitoring various human activities at −40 °C. This work provides wearable strain sensors for monitoring human‐machine interaction under low‐temperature condition.</description><identifier>ISSN: 2365-709X</identifier><identifier>EISSN: 2365-709X</identifier><identifier>DOI: 10.1002/admt.202300867</identifier><language>eng</language><ispartof>Advanced materials technologies, 2023-11, Vol.8 (21)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-b326cf718d3cbdfb9a2c7e01f3bb081f26fd7646358cea31010044236f0ffadc3</citedby><cites>FETCH-LOGICAL-c279t-b326cf718d3cbdfb9a2c7e01f3bb081f26fd7646358cea31010044236f0ffadc3</cites><orcidid>0000-0001-9040-5105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Niu, Shicong</creatorcontrib><creatorcontrib>He, Shiyu</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Zhu, Zhihao</creatorcontrib><creatorcontrib>Chang, Xueting</creatorcontrib><creatorcontrib>Yang, Chuanxiao</creatorcontrib><creatorcontrib>Li, Junfeng</creatorcontrib><creatorcontrib>Jiang, Yingchang</creatorcontrib><creatorcontrib>Wang, Dongsheng</creatorcontrib><creatorcontrib>Zhu, Yanqiu</creatorcontrib><creatorcontrib>Sun, Shibin</creatorcontrib><title>3D Printing Assisted‐Fabrication of Low‐Temperature Strain Sensors with Large Working Range and Outstanding Stability</title><title>Advanced materials technologies</title><description>Recently, low‐temperature wearable strain sensors, referring to those working at sub‐zero temperatures, are attracting increasing attentions. However, the fabrication of low‐temperature strain sensors with large working ranges, high sensitivity, and good stability remains a major challenge. In this study, a novel low‐temperature wearable strain sensor is fabricated by depositing the silver nanoplates (Ag NPs)/carbon nanotubes (CNTs) composite onto a cured silicone (DS) substrate that is constructed by using a 3D printing technology. The synergistic effect of the Ag NPs with positive temperature coefficient of resistance (TCR) and the CNTs with negative TCR enable the Ag NPs/CNTs/DS strain sensor's TCR value (−1.16 × 10 −5 K −1 ) to approach zero. The Ag NPs/CNTs/DS strain sensor demonstrates a high gauge factor over a large working range (0–100%) and fast response and recovery rates. Simultaneously, the Ag NPs/CNTs/DS strain sensor displays outstanding reproducibility and long‐term stability at −40 °C as well as excellent temperature cycling resistance under cyclic temperature of −40 to 60 °C. The Ag NPs/CNTs/DS strain sensor is further validated by incorporating into a wireless sensing system for remotely monitoring various human activities at −40 °C. This work provides wearable strain sensors for monitoring human‐machine interaction under low‐temperature condition.</description><issn>2365-709X</issn><issn>2365-709X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkMtKAzEYhYMoWGq3rvMCU_8kbWZmWapVYaBiK7obcq3RNlOSlDI7H8Fn9EmcQRFX57I4cD6ELgmMCQC9EnqXxhQoAyh4foIGlPFplkP5cvrPn6NRjG8AQErCWUEHqGXX-CE4n5zf4FmMLiajvz4-F0IGp0RyjceNxVVz7Mq12e1NEOkQDF6lIJzHK-NjEyI-uvSKKxE2Bj834b1fexS-S8JrvDykmDrTt6skpNu61F6gMyu20Yx-dYieFjfr-V1WLW_v57MqUzQvUyYZ5crmpNBMSW1lKajKDRDLpISCWMqtzvmEs2mhjGAEOhyTSffYgrVCKzZE459dFZoYg7H1PridCG1NoO7Z1T27-o8d-waObmbx</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Niu, Shicong</creator><creator>He, Shiyu</creator><creator>Chen, Yu</creator><creator>Zhu, Zhihao</creator><creator>Chang, Xueting</creator><creator>Yang, Chuanxiao</creator><creator>Li, Junfeng</creator><creator>Jiang, Yingchang</creator><creator>Wang, Dongsheng</creator><creator>Zhu, Yanqiu</creator><creator>Sun, Shibin</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9040-5105</orcidid></search><sort><creationdate>20231101</creationdate><title>3D Printing Assisted‐Fabrication of Low‐Temperature Strain Sensors with Large Working Range and Outstanding Stability</title><author>Niu, Shicong ; He, Shiyu ; Chen, Yu ; Zhu, Zhihao ; Chang, Xueting ; Yang, Chuanxiao ; Li, Junfeng ; Jiang, Yingchang ; Wang, Dongsheng ; Zhu, Yanqiu ; Sun, Shibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-b326cf718d3cbdfb9a2c7e01f3bb081f26fd7646358cea31010044236f0ffadc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Shicong</creatorcontrib><creatorcontrib>He, Shiyu</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Zhu, Zhihao</creatorcontrib><creatorcontrib>Chang, Xueting</creatorcontrib><creatorcontrib>Yang, Chuanxiao</creatorcontrib><creatorcontrib>Li, Junfeng</creatorcontrib><creatorcontrib>Jiang, Yingchang</creatorcontrib><creatorcontrib>Wang, Dongsheng</creatorcontrib><creatorcontrib>Zhu, Yanqiu</creatorcontrib><creatorcontrib>Sun, Shibin</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced materials technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Shicong</au><au>He, Shiyu</au><au>Chen, Yu</au><au>Zhu, Zhihao</au><au>Chang, Xueting</au><au>Yang, Chuanxiao</au><au>Li, Junfeng</au><au>Jiang, Yingchang</au><au>Wang, Dongsheng</au><au>Zhu, Yanqiu</au><au>Sun, Shibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printing Assisted‐Fabrication of Low‐Temperature Strain Sensors with Large Working Range and Outstanding Stability</atitle><jtitle>Advanced materials technologies</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>8</volume><issue>21</issue><issn>2365-709X</issn><eissn>2365-709X</eissn><abstract>Recently, low‐temperature wearable strain sensors, referring to those working at sub‐zero temperatures, are attracting increasing attentions. However, the fabrication of low‐temperature strain sensors with large working ranges, high sensitivity, and good stability remains a major challenge. In this study, a novel low‐temperature wearable strain sensor is fabricated by depositing the silver nanoplates (Ag NPs)/carbon nanotubes (CNTs) composite onto a cured silicone (DS) substrate that is constructed by using a 3D printing technology. The synergistic effect of the Ag NPs with positive temperature coefficient of resistance (TCR) and the CNTs with negative TCR enable the Ag NPs/CNTs/DS strain sensor's TCR value (−1.16 × 10 −5 K −1 ) to approach zero. The Ag NPs/CNTs/DS strain sensor demonstrates a high gauge factor over a large working range (0–100%) and fast response and recovery rates. Simultaneously, the Ag NPs/CNTs/DS strain sensor displays outstanding reproducibility and long‐term stability at −40 °C as well as excellent temperature cycling resistance under cyclic temperature of −40 to 60 °C. The Ag NPs/CNTs/DS strain sensor is further validated by incorporating into a wireless sensing system for remotely monitoring various human activities at −40 °C. This work provides wearable strain sensors for monitoring human‐machine interaction under low‐temperature condition.</abstract><doi>10.1002/admt.202300867</doi><orcidid>https://orcid.org/0000-0001-9040-5105</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2365-709X
ispartof Advanced materials technologies, 2023-11, Vol.8 (21)
issn 2365-709X
2365-709X
language eng
recordid cdi_crossref_primary_10_1002_admt_202300867
source Wiley Online Library Journals Frontfile Complete
title 3D Printing Assisted‐Fabrication of Low‐Temperature Strain Sensors with Large Working Range and Outstanding Stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T21%3A34%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printing%20Assisted%E2%80%90Fabrication%20of%20Low%E2%80%90Temperature%20Strain%20Sensors%20with%20Large%20Working%20Range%20and%20Outstanding%20Stability&rft.jtitle=Advanced%20materials%20technologies&rft.au=Niu,%20Shicong&rft.date=2023-11-01&rft.volume=8&rft.issue=21&rft.issn=2365-709X&rft.eissn=2365-709X&rft_id=info:doi/10.1002/admt.202300867&rft_dat=%3Ccrossref%3E10_1002_admt_202300867%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true