Soft Wearable Thermal Devices Integrated with Machine Learning

Core body temperature (CBT) is a vital parameter that provides insight into individuals' overall health. However, existing methods to monitor CBT are mainly invasive and limited to applications in operating rooms. This work reports a soft wearable thermal device with low power operation to accu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials technologies 2023-08, Vol.8 (16), p.n/a
Hauptverfasser: Zavareh, Amir, Tran, Brittany, Orred, Christian, Rhodes, Savannah, Rahman, Md Saifur, Namkoong, Myeong, Lee, Ricky, Carlisle, Cody, Rosas, Miguel, Pavlov, Anton, Chen, Ian, Schilling, Greg, Smith, Marc, Masood, Fahad, Hanks, John, Tian, Limei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page
container_title Advanced materials technologies
container_volume 8
creator Zavareh, Amir
Tran, Brittany
Orred, Christian
Rhodes, Savannah
Rahman, Md Saifur
Namkoong, Myeong
Lee, Ricky
Carlisle, Cody
Rosas, Miguel
Pavlov, Anton
Chen, Ian
Schilling, Greg
Smith, Marc
Masood, Fahad
Hanks, John
Tian, Limei
description Core body temperature (CBT) is a vital parameter that provides insight into individuals' overall health. However, existing methods to monitor CBT are mainly invasive and limited to applications in operating rooms. This work reports a soft wearable thermal device with low power operation to accurately monitor the core temperature and overcome these limitations. The thermal device comprises multiple temperature sensors separated with insulating materials of different thermal conductivities. The design provides a well‐defined thermal gradient to characterize the heat flux across the device. Thermal simulation of the devices with finite element analysis provides guidelines on the device design. Experimental studies involving tissue phantom and human subjects characterize and validate the device performance. A machine learning approach can account for heterogeneous, hard‐to‐measure parameters among individuals such as tissue thermal conductivity and heat generation rate. The machine learning algorithms can be trained to accurately quantify the core temperature in human subjects using the zero‐heat‐flux device measured temperature as a reference. The results show that the mean core temperature difference between the zero‐heat‐flux and the devices is 0.01 °C with 95% limits of agreement in the range of −0.08 °C and 0.1 °C. A soft wearable thermal device with low‐power operation is developed to accurately monitor the core body temperature (CBT). A machine learning approach is implemented to account for heterogeneous and hard‐to‐measure parameters among individuals, such as tissue thermal conductivity and heat generation rate, improving the core temperature's quantification accuracy.
doi_str_mv 10.1002/admt.202300206
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_admt_202300206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADMT202300206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2846-deee90aa77c3827cab14f48882967e478e884c7300624420b0c5701b1ad13a9c3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsNRePe8fSJzdbLO7F6G0fhRSPBjRW5hsJk0kSWUTLP33plTUm6eZgfeZGR7GrgWEAkDeYNEOoQQZjQPEZ2wio3geaLBv53_6Szbr-3cAEFbEkZETdvu8Kwf-Sugxb4inFfkWG76iz9pRz9fdQFuPAxV8Xw8V36Cr6o54MgJd3W2v2EWJTU-z7zplL_d36fIxSJ4e1stFEjhpVBwURGQBUWs3XtUOc6FKZYyRNtaktCFjlNPj87FUSkIObq5B5AILEaF10ZSFp73O7_reU5l9-LpFf8gEZEcB2VFA9iNgBOwJ2NcNHf5JZ4vVJv1lvwBh-15G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Soft Wearable Thermal Devices Integrated with Machine Learning</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Zavareh, Amir ; Tran, Brittany ; Orred, Christian ; Rhodes, Savannah ; Rahman, Md Saifur ; Namkoong, Myeong ; Lee, Ricky ; Carlisle, Cody ; Rosas, Miguel ; Pavlov, Anton ; Chen, Ian ; Schilling, Greg ; Smith, Marc ; Masood, Fahad ; Hanks, John ; Tian, Limei</creator><creatorcontrib>Zavareh, Amir ; Tran, Brittany ; Orred, Christian ; Rhodes, Savannah ; Rahman, Md Saifur ; Namkoong, Myeong ; Lee, Ricky ; Carlisle, Cody ; Rosas, Miguel ; Pavlov, Anton ; Chen, Ian ; Schilling, Greg ; Smith, Marc ; Masood, Fahad ; Hanks, John ; Tian, Limei</creatorcontrib><description>Core body temperature (CBT) is a vital parameter that provides insight into individuals' overall health. However, existing methods to monitor CBT are mainly invasive and limited to applications in operating rooms. This work reports a soft wearable thermal device with low power operation to accurately monitor the core temperature and overcome these limitations. The thermal device comprises multiple temperature sensors separated with insulating materials of different thermal conductivities. The design provides a well‐defined thermal gradient to characterize the heat flux across the device. Thermal simulation of the devices with finite element analysis provides guidelines on the device design. Experimental studies involving tissue phantom and human subjects characterize and validate the device performance. A machine learning approach can account for heterogeneous, hard‐to‐measure parameters among individuals such as tissue thermal conductivity and heat generation rate. The machine learning algorithms can be trained to accurately quantify the core temperature in human subjects using the zero‐heat‐flux device measured temperature as a reference. The results show that the mean core temperature difference between the zero‐heat‐flux and the devices is 0.01 °C with 95% limits of agreement in the range of −0.08 °C and 0.1 °C. A soft wearable thermal device with low‐power operation is developed to accurately monitor the core body temperature (CBT). A machine learning approach is implemented to account for heterogeneous and hard‐to‐measure parameters among individuals, such as tissue thermal conductivity and heat generation rate, improving the core temperature's quantification accuracy.</description><identifier>ISSN: 2365-709X</identifier><identifier>EISSN: 2365-709X</identifier><identifier>DOI: 10.1002/admt.202300206</identifier><language>eng</language><subject>core body temperature ; machine learning ; perioperative hypothermia ; wearable sensors</subject><ispartof>Advanced materials technologies, 2023-08, Vol.8 (16), p.n/a</ispartof><rights>2023 The Authors. Advanced Materials Technologies published by Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2846-deee90aa77c3827cab14f48882967e478e884c7300624420b0c5701b1ad13a9c3</cites><orcidid>0000-0002-1931-8567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmt.202300206$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmt.202300206$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zavareh, Amir</creatorcontrib><creatorcontrib>Tran, Brittany</creatorcontrib><creatorcontrib>Orred, Christian</creatorcontrib><creatorcontrib>Rhodes, Savannah</creatorcontrib><creatorcontrib>Rahman, Md Saifur</creatorcontrib><creatorcontrib>Namkoong, Myeong</creatorcontrib><creatorcontrib>Lee, Ricky</creatorcontrib><creatorcontrib>Carlisle, Cody</creatorcontrib><creatorcontrib>Rosas, Miguel</creatorcontrib><creatorcontrib>Pavlov, Anton</creatorcontrib><creatorcontrib>Chen, Ian</creatorcontrib><creatorcontrib>Schilling, Greg</creatorcontrib><creatorcontrib>Smith, Marc</creatorcontrib><creatorcontrib>Masood, Fahad</creatorcontrib><creatorcontrib>Hanks, John</creatorcontrib><creatorcontrib>Tian, Limei</creatorcontrib><title>Soft Wearable Thermal Devices Integrated with Machine Learning</title><title>Advanced materials technologies</title><description>Core body temperature (CBT) is a vital parameter that provides insight into individuals' overall health. However, existing methods to monitor CBT are mainly invasive and limited to applications in operating rooms. This work reports a soft wearable thermal device with low power operation to accurately monitor the core temperature and overcome these limitations. The thermal device comprises multiple temperature sensors separated with insulating materials of different thermal conductivities. The design provides a well‐defined thermal gradient to characterize the heat flux across the device. Thermal simulation of the devices with finite element analysis provides guidelines on the device design. Experimental studies involving tissue phantom and human subjects characterize and validate the device performance. A machine learning approach can account for heterogeneous, hard‐to‐measure parameters among individuals such as tissue thermal conductivity and heat generation rate. The machine learning algorithms can be trained to accurately quantify the core temperature in human subjects using the zero‐heat‐flux device measured temperature as a reference. The results show that the mean core temperature difference between the zero‐heat‐flux and the devices is 0.01 °C with 95% limits of agreement in the range of −0.08 °C and 0.1 °C. A soft wearable thermal device with low‐power operation is developed to accurately monitor the core body temperature (CBT). A machine learning approach is implemented to account for heterogeneous and hard‐to‐measure parameters among individuals, such as tissue thermal conductivity and heat generation rate, improving the core temperature's quantification accuracy.</description><subject>core body temperature</subject><subject>machine learning</subject><subject>perioperative hypothermia</subject><subject>wearable sensors</subject><issn>2365-709X</issn><issn>2365-709X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkE1Lw0AQhhdRsNRePe8fSJzdbLO7F6G0fhRSPBjRW5hsJk0kSWUTLP33plTUm6eZgfeZGR7GrgWEAkDeYNEOoQQZjQPEZ2wio3geaLBv53_6Szbr-3cAEFbEkZETdvu8Kwf-Sugxb4inFfkWG76iz9pRz9fdQFuPAxV8Xw8V36Cr6o54MgJd3W2v2EWJTU-z7zplL_d36fIxSJ4e1stFEjhpVBwURGQBUWs3XtUOc6FKZYyRNtaktCFjlNPj87FUSkIObq5B5AILEaF10ZSFp73O7_reU5l9-LpFf8gEZEcB2VFA9iNgBOwJ2NcNHf5JZ4vVJv1lvwBh-15G</recordid><startdate>20230825</startdate><enddate>20230825</enddate><creator>Zavareh, Amir</creator><creator>Tran, Brittany</creator><creator>Orred, Christian</creator><creator>Rhodes, Savannah</creator><creator>Rahman, Md Saifur</creator><creator>Namkoong, Myeong</creator><creator>Lee, Ricky</creator><creator>Carlisle, Cody</creator><creator>Rosas, Miguel</creator><creator>Pavlov, Anton</creator><creator>Chen, Ian</creator><creator>Schilling, Greg</creator><creator>Smith, Marc</creator><creator>Masood, Fahad</creator><creator>Hanks, John</creator><creator>Tian, Limei</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1931-8567</orcidid></search><sort><creationdate>20230825</creationdate><title>Soft Wearable Thermal Devices Integrated with Machine Learning</title><author>Zavareh, Amir ; Tran, Brittany ; Orred, Christian ; Rhodes, Savannah ; Rahman, Md Saifur ; Namkoong, Myeong ; Lee, Ricky ; Carlisle, Cody ; Rosas, Miguel ; Pavlov, Anton ; Chen, Ian ; Schilling, Greg ; Smith, Marc ; Masood, Fahad ; Hanks, John ; Tian, Limei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2846-deee90aa77c3827cab14f48882967e478e884c7300624420b0c5701b1ad13a9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>core body temperature</topic><topic>machine learning</topic><topic>perioperative hypothermia</topic><topic>wearable sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zavareh, Amir</creatorcontrib><creatorcontrib>Tran, Brittany</creatorcontrib><creatorcontrib>Orred, Christian</creatorcontrib><creatorcontrib>Rhodes, Savannah</creatorcontrib><creatorcontrib>Rahman, Md Saifur</creatorcontrib><creatorcontrib>Namkoong, Myeong</creatorcontrib><creatorcontrib>Lee, Ricky</creatorcontrib><creatorcontrib>Carlisle, Cody</creatorcontrib><creatorcontrib>Rosas, Miguel</creatorcontrib><creatorcontrib>Pavlov, Anton</creatorcontrib><creatorcontrib>Chen, Ian</creatorcontrib><creatorcontrib>Schilling, Greg</creatorcontrib><creatorcontrib>Smith, Marc</creatorcontrib><creatorcontrib>Masood, Fahad</creatorcontrib><creatorcontrib>Hanks, John</creatorcontrib><creatorcontrib>Tian, Limei</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><jtitle>Advanced materials technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zavareh, Amir</au><au>Tran, Brittany</au><au>Orred, Christian</au><au>Rhodes, Savannah</au><au>Rahman, Md Saifur</au><au>Namkoong, Myeong</au><au>Lee, Ricky</au><au>Carlisle, Cody</au><au>Rosas, Miguel</au><au>Pavlov, Anton</au><au>Chen, Ian</au><au>Schilling, Greg</au><au>Smith, Marc</au><au>Masood, Fahad</au><au>Hanks, John</au><au>Tian, Limei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft Wearable Thermal Devices Integrated with Machine Learning</atitle><jtitle>Advanced materials technologies</jtitle><date>2023-08-25</date><risdate>2023</risdate><volume>8</volume><issue>16</issue><epage>n/a</epage><issn>2365-709X</issn><eissn>2365-709X</eissn><abstract>Core body temperature (CBT) is a vital parameter that provides insight into individuals' overall health. However, existing methods to monitor CBT are mainly invasive and limited to applications in operating rooms. This work reports a soft wearable thermal device with low power operation to accurately monitor the core temperature and overcome these limitations. The thermal device comprises multiple temperature sensors separated with insulating materials of different thermal conductivities. The design provides a well‐defined thermal gradient to characterize the heat flux across the device. Thermal simulation of the devices with finite element analysis provides guidelines on the device design. Experimental studies involving tissue phantom and human subjects characterize and validate the device performance. A machine learning approach can account for heterogeneous, hard‐to‐measure parameters among individuals such as tissue thermal conductivity and heat generation rate. The machine learning algorithms can be trained to accurately quantify the core temperature in human subjects using the zero‐heat‐flux device measured temperature as a reference. The results show that the mean core temperature difference between the zero‐heat‐flux and the devices is 0.01 °C with 95% limits of agreement in the range of −0.08 °C and 0.1 °C. A soft wearable thermal device with low‐power operation is developed to accurately monitor the core body temperature (CBT). A machine learning approach is implemented to account for heterogeneous and hard‐to‐measure parameters among individuals, such as tissue thermal conductivity and heat generation rate, improving the core temperature's quantification accuracy.</abstract><doi>10.1002/admt.202300206</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1931-8567</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2365-709X
ispartof Advanced materials technologies, 2023-08, Vol.8 (16), p.n/a
issn 2365-709X
2365-709X
language eng
recordid cdi_crossref_primary_10_1002_admt_202300206
source Wiley Online Library - AutoHoldings Journals
subjects core body temperature
machine learning
perioperative hypothermia
wearable sensors
title Soft Wearable Thermal Devices Integrated with Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20Wearable%20Thermal%20Devices%20Integrated%20with%20Machine%20Learning&rft.jtitle=Advanced%20materials%20technologies&rft.au=Zavareh,%20Amir&rft.date=2023-08-25&rft.volume=8&rft.issue=16&rft.epage=n/a&rft.issn=2365-709X&rft.eissn=2365-709X&rft_id=info:doi/10.1002/admt.202300206&rft_dat=%3Cwiley_cross%3EADMT202300206%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true