Soft Wearable Thermal Devices Integrated with Machine Learning
Core body temperature (CBT) is a vital parameter that provides insight into individuals' overall health. However, existing methods to monitor CBT are mainly invasive and limited to applications in operating rooms. This work reports a soft wearable thermal device with low power operation to accu...
Gespeichert in:
Veröffentlicht in: | Advanced materials technologies 2023-08, Vol.8 (16), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 16 |
container_start_page | |
container_title | Advanced materials technologies |
container_volume | 8 |
creator | Zavareh, Amir Tran, Brittany Orred, Christian Rhodes, Savannah Rahman, Md Saifur Namkoong, Myeong Lee, Ricky Carlisle, Cody Rosas, Miguel Pavlov, Anton Chen, Ian Schilling, Greg Smith, Marc Masood, Fahad Hanks, John Tian, Limei |
description | Core body temperature (CBT) is a vital parameter that provides insight into individuals' overall health. However, existing methods to monitor CBT are mainly invasive and limited to applications in operating rooms. This work reports a soft wearable thermal device with low power operation to accurately monitor the core temperature and overcome these limitations. The thermal device comprises multiple temperature sensors separated with insulating materials of different thermal conductivities. The design provides a well‐defined thermal gradient to characterize the heat flux across the device. Thermal simulation of the devices with finite element analysis provides guidelines on the device design. Experimental studies involving tissue phantom and human subjects characterize and validate the device performance. A machine learning approach can account for heterogeneous, hard‐to‐measure parameters among individuals such as tissue thermal conductivity and heat generation rate. The machine learning algorithms can be trained to accurately quantify the core temperature in human subjects using the zero‐heat‐flux device measured temperature as a reference. The results show that the mean core temperature difference between the zero‐heat‐flux and the devices is 0.01 °C with 95% limits of agreement in the range of −0.08 °C and 0.1 °C.
A soft wearable thermal device with low‐power operation is developed to accurately monitor the core body temperature (CBT). A machine learning approach is implemented to account for heterogeneous and hard‐to‐measure parameters among individuals, such as tissue thermal conductivity and heat generation rate, improving the core temperature's quantification accuracy. |
doi_str_mv | 10.1002/admt.202300206 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_admt_202300206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADMT202300206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2846-deee90aa77c3827cab14f48882967e478e884c7300624420b0c5701b1ad13a9c3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsNRePe8fSJzdbLO7F6G0fhRSPBjRW5hsJk0kSWUTLP33plTUm6eZgfeZGR7GrgWEAkDeYNEOoQQZjQPEZ2wio3geaLBv53_6Szbr-3cAEFbEkZETdvu8Kwf-Sugxb4inFfkWG76iz9pRz9fdQFuPAxV8Xw8V36Cr6o54MgJd3W2v2EWJTU-z7zplL_d36fIxSJ4e1stFEjhpVBwURGQBUWs3XtUOc6FKZYyRNtaktCFjlNPj87FUSkIObq5B5AILEaF10ZSFp73O7_reU5l9-LpFf8gEZEcB2VFA9iNgBOwJ2NcNHf5JZ4vVJv1lvwBh-15G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Soft Wearable Thermal Devices Integrated with Machine Learning</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Zavareh, Amir ; Tran, Brittany ; Orred, Christian ; Rhodes, Savannah ; Rahman, Md Saifur ; Namkoong, Myeong ; Lee, Ricky ; Carlisle, Cody ; Rosas, Miguel ; Pavlov, Anton ; Chen, Ian ; Schilling, Greg ; Smith, Marc ; Masood, Fahad ; Hanks, John ; Tian, Limei</creator><creatorcontrib>Zavareh, Amir ; Tran, Brittany ; Orred, Christian ; Rhodes, Savannah ; Rahman, Md Saifur ; Namkoong, Myeong ; Lee, Ricky ; Carlisle, Cody ; Rosas, Miguel ; Pavlov, Anton ; Chen, Ian ; Schilling, Greg ; Smith, Marc ; Masood, Fahad ; Hanks, John ; Tian, Limei</creatorcontrib><description>Core body temperature (CBT) is a vital parameter that provides insight into individuals' overall health. However, existing methods to monitor CBT are mainly invasive and limited to applications in operating rooms. This work reports a soft wearable thermal device with low power operation to accurately monitor the core temperature and overcome these limitations. The thermal device comprises multiple temperature sensors separated with insulating materials of different thermal conductivities. The design provides a well‐defined thermal gradient to characterize the heat flux across the device. Thermal simulation of the devices with finite element analysis provides guidelines on the device design. Experimental studies involving tissue phantom and human subjects characterize and validate the device performance. A machine learning approach can account for heterogeneous, hard‐to‐measure parameters among individuals such as tissue thermal conductivity and heat generation rate. The machine learning algorithms can be trained to accurately quantify the core temperature in human subjects using the zero‐heat‐flux device measured temperature as a reference. The results show that the mean core temperature difference between the zero‐heat‐flux and the devices is 0.01 °C with 95% limits of agreement in the range of −0.08 °C and 0.1 °C.
A soft wearable thermal device with low‐power operation is developed to accurately monitor the core body temperature (CBT). A machine learning approach is implemented to account for heterogeneous and hard‐to‐measure parameters among individuals, such as tissue thermal conductivity and heat generation rate, improving the core temperature's quantification accuracy.</description><identifier>ISSN: 2365-709X</identifier><identifier>EISSN: 2365-709X</identifier><identifier>DOI: 10.1002/admt.202300206</identifier><language>eng</language><subject>core body temperature ; machine learning ; perioperative hypothermia ; wearable sensors</subject><ispartof>Advanced materials technologies, 2023-08, Vol.8 (16), p.n/a</ispartof><rights>2023 The Authors. Advanced Materials Technologies published by Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2846-deee90aa77c3827cab14f48882967e478e884c7300624420b0c5701b1ad13a9c3</cites><orcidid>0000-0002-1931-8567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmt.202300206$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmt.202300206$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zavareh, Amir</creatorcontrib><creatorcontrib>Tran, Brittany</creatorcontrib><creatorcontrib>Orred, Christian</creatorcontrib><creatorcontrib>Rhodes, Savannah</creatorcontrib><creatorcontrib>Rahman, Md Saifur</creatorcontrib><creatorcontrib>Namkoong, Myeong</creatorcontrib><creatorcontrib>Lee, Ricky</creatorcontrib><creatorcontrib>Carlisle, Cody</creatorcontrib><creatorcontrib>Rosas, Miguel</creatorcontrib><creatorcontrib>Pavlov, Anton</creatorcontrib><creatorcontrib>Chen, Ian</creatorcontrib><creatorcontrib>Schilling, Greg</creatorcontrib><creatorcontrib>Smith, Marc</creatorcontrib><creatorcontrib>Masood, Fahad</creatorcontrib><creatorcontrib>Hanks, John</creatorcontrib><creatorcontrib>Tian, Limei</creatorcontrib><title>Soft Wearable Thermal Devices Integrated with Machine Learning</title><title>Advanced materials technologies</title><description>Core body temperature (CBT) is a vital parameter that provides insight into individuals' overall health. However, existing methods to monitor CBT are mainly invasive and limited to applications in operating rooms. This work reports a soft wearable thermal device with low power operation to accurately monitor the core temperature and overcome these limitations. The thermal device comprises multiple temperature sensors separated with insulating materials of different thermal conductivities. The design provides a well‐defined thermal gradient to characterize the heat flux across the device. Thermal simulation of the devices with finite element analysis provides guidelines on the device design. Experimental studies involving tissue phantom and human subjects characterize and validate the device performance. A machine learning approach can account for heterogeneous, hard‐to‐measure parameters among individuals such as tissue thermal conductivity and heat generation rate. The machine learning algorithms can be trained to accurately quantify the core temperature in human subjects using the zero‐heat‐flux device measured temperature as a reference. The results show that the mean core temperature difference between the zero‐heat‐flux and the devices is 0.01 °C with 95% limits of agreement in the range of −0.08 °C and 0.1 °C.
A soft wearable thermal device with low‐power operation is developed to accurately monitor the core body temperature (CBT). A machine learning approach is implemented to account for heterogeneous and hard‐to‐measure parameters among individuals, such as tissue thermal conductivity and heat generation rate, improving the core temperature's quantification accuracy.</description><subject>core body temperature</subject><subject>machine learning</subject><subject>perioperative hypothermia</subject><subject>wearable sensors</subject><issn>2365-709X</issn><issn>2365-709X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkE1Lw0AQhhdRsNRePe8fSJzdbLO7F6G0fhRSPBjRW5hsJk0kSWUTLP33plTUm6eZgfeZGR7GrgWEAkDeYNEOoQQZjQPEZ2wio3geaLBv53_6Szbr-3cAEFbEkZETdvu8Kwf-Sugxb4inFfkWG76iz9pRz9fdQFuPAxV8Xw8V36Cr6o54MgJd3W2v2EWJTU-z7zplL_d36fIxSJ4e1stFEjhpVBwURGQBUWs3XtUOc6FKZYyRNtaktCFjlNPj87FUSkIObq5B5AILEaF10ZSFp73O7_reU5l9-LpFf8gEZEcB2VFA9iNgBOwJ2NcNHf5JZ4vVJv1lvwBh-15G</recordid><startdate>20230825</startdate><enddate>20230825</enddate><creator>Zavareh, Amir</creator><creator>Tran, Brittany</creator><creator>Orred, Christian</creator><creator>Rhodes, Savannah</creator><creator>Rahman, Md Saifur</creator><creator>Namkoong, Myeong</creator><creator>Lee, Ricky</creator><creator>Carlisle, Cody</creator><creator>Rosas, Miguel</creator><creator>Pavlov, Anton</creator><creator>Chen, Ian</creator><creator>Schilling, Greg</creator><creator>Smith, Marc</creator><creator>Masood, Fahad</creator><creator>Hanks, John</creator><creator>Tian, Limei</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1931-8567</orcidid></search><sort><creationdate>20230825</creationdate><title>Soft Wearable Thermal Devices Integrated with Machine Learning</title><author>Zavareh, Amir ; Tran, Brittany ; Orred, Christian ; Rhodes, Savannah ; Rahman, Md Saifur ; Namkoong, Myeong ; Lee, Ricky ; Carlisle, Cody ; Rosas, Miguel ; Pavlov, Anton ; Chen, Ian ; Schilling, Greg ; Smith, Marc ; Masood, Fahad ; Hanks, John ; Tian, Limei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2846-deee90aa77c3827cab14f48882967e478e884c7300624420b0c5701b1ad13a9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>core body temperature</topic><topic>machine learning</topic><topic>perioperative hypothermia</topic><topic>wearable sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zavareh, Amir</creatorcontrib><creatorcontrib>Tran, Brittany</creatorcontrib><creatorcontrib>Orred, Christian</creatorcontrib><creatorcontrib>Rhodes, Savannah</creatorcontrib><creatorcontrib>Rahman, Md Saifur</creatorcontrib><creatorcontrib>Namkoong, Myeong</creatorcontrib><creatorcontrib>Lee, Ricky</creatorcontrib><creatorcontrib>Carlisle, Cody</creatorcontrib><creatorcontrib>Rosas, Miguel</creatorcontrib><creatorcontrib>Pavlov, Anton</creatorcontrib><creatorcontrib>Chen, Ian</creatorcontrib><creatorcontrib>Schilling, Greg</creatorcontrib><creatorcontrib>Smith, Marc</creatorcontrib><creatorcontrib>Masood, Fahad</creatorcontrib><creatorcontrib>Hanks, John</creatorcontrib><creatorcontrib>Tian, Limei</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><jtitle>Advanced materials technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zavareh, Amir</au><au>Tran, Brittany</au><au>Orred, Christian</au><au>Rhodes, Savannah</au><au>Rahman, Md Saifur</au><au>Namkoong, Myeong</au><au>Lee, Ricky</au><au>Carlisle, Cody</au><au>Rosas, Miguel</au><au>Pavlov, Anton</au><au>Chen, Ian</au><au>Schilling, Greg</au><au>Smith, Marc</au><au>Masood, Fahad</au><au>Hanks, John</au><au>Tian, Limei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soft Wearable Thermal Devices Integrated with Machine Learning</atitle><jtitle>Advanced materials technologies</jtitle><date>2023-08-25</date><risdate>2023</risdate><volume>8</volume><issue>16</issue><epage>n/a</epage><issn>2365-709X</issn><eissn>2365-709X</eissn><abstract>Core body temperature (CBT) is a vital parameter that provides insight into individuals' overall health. However, existing methods to monitor CBT are mainly invasive and limited to applications in operating rooms. This work reports a soft wearable thermal device with low power operation to accurately monitor the core temperature and overcome these limitations. The thermal device comprises multiple temperature sensors separated with insulating materials of different thermal conductivities. The design provides a well‐defined thermal gradient to characterize the heat flux across the device. Thermal simulation of the devices with finite element analysis provides guidelines on the device design. Experimental studies involving tissue phantom and human subjects characterize and validate the device performance. A machine learning approach can account for heterogeneous, hard‐to‐measure parameters among individuals such as tissue thermal conductivity and heat generation rate. The machine learning algorithms can be trained to accurately quantify the core temperature in human subjects using the zero‐heat‐flux device measured temperature as a reference. The results show that the mean core temperature difference between the zero‐heat‐flux and the devices is 0.01 °C with 95% limits of agreement in the range of −0.08 °C and 0.1 °C.
A soft wearable thermal device with low‐power operation is developed to accurately monitor the core body temperature (CBT). A machine learning approach is implemented to account for heterogeneous and hard‐to‐measure parameters among individuals, such as tissue thermal conductivity and heat generation rate, improving the core temperature's quantification accuracy.</abstract><doi>10.1002/admt.202300206</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1931-8567</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2365-709X |
ispartof | Advanced materials technologies, 2023-08, Vol.8 (16), p.n/a |
issn | 2365-709X 2365-709X |
language | eng |
recordid | cdi_crossref_primary_10_1002_admt_202300206 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | core body temperature machine learning perioperative hypothermia wearable sensors |
title | Soft Wearable Thermal Devices Integrated with Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soft%20Wearable%20Thermal%20Devices%20Integrated%20with%20Machine%20Learning&rft.jtitle=Advanced%20materials%20technologies&rft.au=Zavareh,%20Amir&rft.date=2023-08-25&rft.volume=8&rft.issue=16&rft.epage=n/a&rft.issn=2365-709X&rft.eissn=2365-709X&rft_id=info:doi/10.1002/admt.202300206&rft_dat=%3Cwiley_cross%3EADMT202300206%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |