Three‐Dimensional Transformation of Membrane‐Type Electronics Using Transient Microfluidic Channels for the Sequential Selective Plasticization of Supportive Plastic Substrates

This study demonstrates a technique for the development of 3D electronics based on planar membrane‐type devices and a supportive plastic (e.g., acrylonitrile butadiene styrene [ABS] used in this study) substrate containing internal microfluidic channels (µ‐FCs) that allow selective plasticization an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials technologies 2023-02, Vol.8 (4), p.n/a
Hauptverfasser: Cha, Jihun, Kim, Gi‐Gwan, Kim, Seung Hyun, Park, Dukkyu, Yoo, Jung Il, Jang, Hun Soo, Yoon, Jongwon, Ko, Heung Cho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Advanced materials technologies
container_volume 8
creator Cha, Jihun
Kim, Gi‐Gwan
Kim, Seung Hyun
Park, Dukkyu
Yoo, Jung Il
Jang, Hun Soo
Yoon, Jongwon
Ko, Heung Cho
description This study demonstrates a technique for the development of 3D electronics based on planar membrane‐type devices and a supportive plastic (e.g., acrylonitrile butadiene styrene [ABS] used in this study) substrate containing internal microfluidic channels (µ‐FCs) that allow selective plasticization and transformation after the insertion of a liquid plasticizer (e.g., N,N‐dimethylformamide). The internal µ‐FC has a strong advantage of transiency and does not require an additional removal process because the channels are self‐closed by the swelling and dissolution of the plasticized regions. Furthermore, the 3D printing process to create internal µ‐FCs provides a considerable amount of freedom in channel design for sequential plasticization and transformation into complex structures. Using this method, extreme scenarios that involve complete bending of the metal electrodes and indium gallium zinc oxide thin‐film transistors laminated to the ABS substrates without electrical failure are possible, regardless of the bending direction and the vertical position of the electrode of the plastic substrate. Finally, a truncated octahedral light‐emitting diode display is successfully developed by multiple cycles of sequential plasticization and transformation processes to demonstrate the feasibility of this method. A simple but powerful method for transforming membrane‐type electronic devices into desirable 3D shapes is demonstrated by using a mechanically supportive plastic substrate with spatially designed internal microfluidic channels to guide and contain a controlled amount of liquid plasticizer for selective plasticization and transformation.
doi_str_mv 10.1002/admt.202201135
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_admt_202201135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADMT202201135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1745-fbe079f31e85e89f59e95e6df0b769a08cba7f29e07cc3be07f3a03037b6621d3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWLRb13mBqbk4lyxLWy_QotApuBsymRMbmZvJVKkrH8GH8Yl8EjNUaneuzuHP9_-H_AhdUDKihLBLWVTdiBHGCKU8PEIDxqMwiIl4PD7YT9HQuWdCCBU04gkboK90bQG-Pz6npoLamaaWJU6trJ1ubCU7L-BG4wVUuRd7MN22gGclqM42tVEOr5ypn3YeA3WHF0bZRpcbUxiFJ2tZ11A67ONwtwa8hJeNp4w_s4Q-xbwCfiil64wy7_uDy03bNvbw0Uu566zswJ2jEy1LB8PfeYZW17N0chvM72_uJuN5oGh8FQY6BxILzSkkISRChwJECFGhSR5HQpJE5TLWTHhKKd7DmkvCCY_zKGK04GdotMv1H3LOgs5aaypptxklWV971tee7Wv3BrEzvJkStv_Q2Xi6SP-8P4Eqjzo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Three‐Dimensional Transformation of Membrane‐Type Electronics Using Transient Microfluidic Channels for the Sequential Selective Plasticization of Supportive Plastic Substrates</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cha, Jihun ; Kim, Gi‐Gwan ; Kim, Seung Hyun ; Park, Dukkyu ; Yoo, Jung Il ; Jang, Hun Soo ; Yoon, Jongwon ; Ko, Heung Cho</creator><creatorcontrib>Cha, Jihun ; Kim, Gi‐Gwan ; Kim, Seung Hyun ; Park, Dukkyu ; Yoo, Jung Il ; Jang, Hun Soo ; Yoon, Jongwon ; Ko, Heung Cho</creatorcontrib><description>This study demonstrates a technique for the development of 3D electronics based on planar membrane‐type devices and a supportive plastic (e.g., acrylonitrile butadiene styrene [ABS] used in this study) substrate containing internal microfluidic channels (µ‐FCs) that allow selective plasticization and transformation after the insertion of a liquid plasticizer (e.g., N,N‐dimethylformamide). The internal µ‐FC has a strong advantage of transiency and does not require an additional removal process because the channels are self‐closed by the swelling and dissolution of the plasticized regions. Furthermore, the 3D printing process to create internal µ‐FCs provides a considerable amount of freedom in channel design for sequential plasticization and transformation into complex structures. Using this method, extreme scenarios that involve complete bending of the metal electrodes and indium gallium zinc oxide thin‐film transistors laminated to the ABS substrates without electrical failure are possible, regardless of the bending direction and the vertical position of the electrode of the plastic substrate. Finally, a truncated octahedral light‐emitting diode display is successfully developed by multiple cycles of sequential plasticization and transformation processes to demonstrate the feasibility of this method. A simple but powerful method for transforming membrane‐type electronic devices into desirable 3D shapes is demonstrated by using a mechanically supportive plastic substrate with spatially designed internal microfluidic channels to guide and contain a controlled amount of liquid plasticizer for selective plasticization and transformation.</description><identifier>ISSN: 2365-709X</identifier><identifier>EISSN: 2365-709X</identifier><identifier>DOI: 10.1002/admt.202201135</identifier><language>eng</language><subject>3D electronics ; 3D printing ; flexible electronics ; microchannel ; plasticization</subject><ispartof>Advanced materials technologies, 2023-02, Vol.8 (4), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1745-fbe079f31e85e89f59e95e6df0b769a08cba7f29e07cc3be07f3a03037b6621d3</cites><orcidid>0000-0002-9078-3146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmt.202201135$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmt.202201135$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Cha, Jihun</creatorcontrib><creatorcontrib>Kim, Gi‐Gwan</creatorcontrib><creatorcontrib>Kim, Seung Hyun</creatorcontrib><creatorcontrib>Park, Dukkyu</creatorcontrib><creatorcontrib>Yoo, Jung Il</creatorcontrib><creatorcontrib>Jang, Hun Soo</creatorcontrib><creatorcontrib>Yoon, Jongwon</creatorcontrib><creatorcontrib>Ko, Heung Cho</creatorcontrib><title>Three‐Dimensional Transformation of Membrane‐Type Electronics Using Transient Microfluidic Channels for the Sequential Selective Plasticization of Supportive Plastic Substrates</title><title>Advanced materials technologies</title><description>This study demonstrates a technique for the development of 3D electronics based on planar membrane‐type devices and a supportive plastic (e.g., acrylonitrile butadiene styrene [ABS] used in this study) substrate containing internal microfluidic channels (µ‐FCs) that allow selective plasticization and transformation after the insertion of a liquid plasticizer (e.g., N,N‐dimethylformamide). The internal µ‐FC has a strong advantage of transiency and does not require an additional removal process because the channels are self‐closed by the swelling and dissolution of the plasticized regions. Furthermore, the 3D printing process to create internal µ‐FCs provides a considerable amount of freedom in channel design for sequential plasticization and transformation into complex structures. Using this method, extreme scenarios that involve complete bending of the metal electrodes and indium gallium zinc oxide thin‐film transistors laminated to the ABS substrates without electrical failure are possible, regardless of the bending direction and the vertical position of the electrode of the plastic substrate. Finally, a truncated octahedral light‐emitting diode display is successfully developed by multiple cycles of sequential plasticization and transformation processes to demonstrate the feasibility of this method. A simple but powerful method for transforming membrane‐type electronic devices into desirable 3D shapes is demonstrated by using a mechanically supportive plastic substrate with spatially designed internal microfluidic channels to guide and contain a controlled amount of liquid plasticizer for selective plasticization and transformation.</description><subject>3D electronics</subject><subject>3D printing</subject><subject>flexible electronics</subject><subject>microchannel</subject><subject>plasticization</subject><issn>2365-709X</issn><issn>2365-709X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWLRb13mBqbk4lyxLWy_QotApuBsymRMbmZvJVKkrH8GH8Yl8EjNUaneuzuHP9_-H_AhdUDKihLBLWVTdiBHGCKU8PEIDxqMwiIl4PD7YT9HQuWdCCBU04gkboK90bQG-Pz6npoLamaaWJU6trJ1ubCU7L-BG4wVUuRd7MN22gGclqM42tVEOr5ypn3YeA3WHF0bZRpcbUxiFJ2tZ11A67ONwtwa8hJeNp4w_s4Q-xbwCfiil64wy7_uDy03bNvbw0Uu566zswJ2jEy1LB8PfeYZW17N0chvM72_uJuN5oGh8FQY6BxILzSkkISRChwJECFGhSR5HQpJE5TLWTHhKKd7DmkvCCY_zKGK04GdotMv1H3LOgs5aaypptxklWV971tee7Wv3BrEzvJkStv_Q2Xi6SP-8P4Eqjzo</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Cha, Jihun</creator><creator>Kim, Gi‐Gwan</creator><creator>Kim, Seung Hyun</creator><creator>Park, Dukkyu</creator><creator>Yoo, Jung Il</creator><creator>Jang, Hun Soo</creator><creator>Yoon, Jongwon</creator><creator>Ko, Heung Cho</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9078-3146</orcidid></search><sort><creationdate>20230201</creationdate><title>Three‐Dimensional Transformation of Membrane‐Type Electronics Using Transient Microfluidic Channels for the Sequential Selective Plasticization of Supportive Plastic Substrates</title><author>Cha, Jihun ; Kim, Gi‐Gwan ; Kim, Seung Hyun ; Park, Dukkyu ; Yoo, Jung Il ; Jang, Hun Soo ; Yoon, Jongwon ; Ko, Heung Cho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1745-fbe079f31e85e89f59e95e6df0b769a08cba7f29e07cc3be07f3a03037b6621d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D electronics</topic><topic>3D printing</topic><topic>flexible electronics</topic><topic>microchannel</topic><topic>plasticization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cha, Jihun</creatorcontrib><creatorcontrib>Kim, Gi‐Gwan</creatorcontrib><creatorcontrib>Kim, Seung Hyun</creatorcontrib><creatorcontrib>Park, Dukkyu</creatorcontrib><creatorcontrib>Yoo, Jung Il</creatorcontrib><creatorcontrib>Jang, Hun Soo</creatorcontrib><creatorcontrib>Yoon, Jongwon</creatorcontrib><creatorcontrib>Ko, Heung Cho</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced materials technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cha, Jihun</au><au>Kim, Gi‐Gwan</au><au>Kim, Seung Hyun</au><au>Park, Dukkyu</au><au>Yoo, Jung Il</au><au>Jang, Hun Soo</au><au>Yoon, Jongwon</au><au>Ko, Heung Cho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three‐Dimensional Transformation of Membrane‐Type Electronics Using Transient Microfluidic Channels for the Sequential Selective Plasticization of Supportive Plastic Substrates</atitle><jtitle>Advanced materials technologies</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>8</volume><issue>4</issue><epage>n/a</epage><issn>2365-709X</issn><eissn>2365-709X</eissn><abstract>This study demonstrates a technique for the development of 3D electronics based on planar membrane‐type devices and a supportive plastic (e.g., acrylonitrile butadiene styrene [ABS] used in this study) substrate containing internal microfluidic channels (µ‐FCs) that allow selective plasticization and transformation after the insertion of a liquid plasticizer (e.g., N,N‐dimethylformamide). The internal µ‐FC has a strong advantage of transiency and does not require an additional removal process because the channels are self‐closed by the swelling and dissolution of the plasticized regions. Furthermore, the 3D printing process to create internal µ‐FCs provides a considerable amount of freedom in channel design for sequential plasticization and transformation into complex structures. Using this method, extreme scenarios that involve complete bending of the metal electrodes and indium gallium zinc oxide thin‐film transistors laminated to the ABS substrates without electrical failure are possible, regardless of the bending direction and the vertical position of the electrode of the plastic substrate. Finally, a truncated octahedral light‐emitting diode display is successfully developed by multiple cycles of sequential plasticization and transformation processes to demonstrate the feasibility of this method. A simple but powerful method for transforming membrane‐type electronic devices into desirable 3D shapes is demonstrated by using a mechanically supportive plastic substrate with spatially designed internal microfluidic channels to guide and contain a controlled amount of liquid plasticizer for selective plasticization and transformation.</abstract><doi>10.1002/admt.202201135</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9078-3146</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2365-709X
ispartof Advanced materials technologies, 2023-02, Vol.8 (4), p.n/a
issn 2365-709X
2365-709X
language eng
recordid cdi_crossref_primary_10_1002_admt_202201135
source Wiley Online Library Journals Frontfile Complete
subjects 3D electronics
3D printing
flexible electronics
microchannel
plasticization
title Three‐Dimensional Transformation of Membrane‐Type Electronics Using Transient Microfluidic Channels for the Sequential Selective Plasticization of Supportive Plastic Substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A51%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%E2%80%90Dimensional%20Transformation%20of%20Membrane%E2%80%90Type%20Electronics%20Using%20Transient%20Microfluidic%20Channels%20for%20the%20Sequential%20Selective%20Plasticization%20of%20Supportive%20Plastic%20Substrates&rft.jtitle=Advanced%20materials%20technologies&rft.au=Cha,%20Jihun&rft.date=2023-02-01&rft.volume=8&rft.issue=4&rft.epage=n/a&rft.issn=2365-709X&rft.eissn=2365-709X&rft_id=info:doi/10.1002/admt.202201135&rft_dat=%3Cwiley_cross%3EADMT202201135%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true