4D Printing of Stretchable Supercapacitors via Hybrid Composite Materials

Stretchable supercapacitors (SCs) have attracted significant attention in developing power‐independent stretchable electronic systems due to their intrinsic energy storage function and unique mechanical properties. Most current SCs are generally limited by their low stretchability, complicated fabri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials technologies 2021-01, Vol.6 (1), p.n/a
Hauptverfasser: Zhou, Yihao, Parker, Charles B., Joshi, Pooran, Naskar, Amit K., Glass, Jeffrey T., Cao, Changyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Advanced materials technologies
container_volume 6
creator Zhou, Yihao
Parker, Charles B.
Joshi, Pooran
Naskar, Amit K.
Glass, Jeffrey T.
Cao, Changyong
description Stretchable supercapacitors (SCs) have attracted significant attention in developing power‐independent stretchable electronic systems due to their intrinsic energy storage function and unique mechanical properties. Most current SCs are generally limited by their low stretchability, complicated fabrication process, and insufficient performance and robustness. This study presents a facile method to fabricate arbitrary‐shaped stretchable electrodes via 4D printing of conductive composite from reduced graphene oxide, carbon nanotube, and poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate. The electrode patterns of an arbitrary shape can be deposited onto prestretched substrates by aerosol‐jet printing, then self‐organized origami (ridge) patterns are generated after releasing the substrates from holding stretchers due to the mismatched strains. The stretchable electrodes demonstrate superior mechanical robustness and stretchability without sacrificing its outstanding electrochemical performance. The symmetric SC prototype possesses a gravimetric capacitance of ≈21.7 F g−1 at a current density of 0.5 A g−1 and a capacitance retention of ≈85.8% from 0.5 to 5 A g−1. A SC array with arbitrary‐shaped electrodes is also fabricated and connected in series to power light‐emitting diode patterns for large‐scale applications. The proposed method paves avenues for scalable manufacturing of future energy‐storage devices with controlled extensibility and high electrochemical performance. A facile, fast, and low‐cost method for 4D printing of conductive composite via noncontact aerosol‐jet printing is developed to fabricate large‐area, arbitrary‐shaped, high‐performance, stretchable supercapacitors. The printed electrodes with an arbitrary shape onto prestretched substrates can generate self‐organized origami (ridge) patterns due to mechanical instability, enabling the extremely large deformation of the devices.
doi_str_mv 10.1002/admt.202001055
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_admt_202001055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADMT202001055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4025-10fcc8ba1ab3f4a5bf57936ba9aaeccff5cbc8c88009650029946d681b129d863</originalsourceid><addsrcrecordid>eNqFkMFKAzEURYMoWGq3rvMDU18ykzRZllZtoUWhFdwNL5lEI21nSEZl_t4pFXXn6r7FPRfeIeSawZgB8Bus9u2YAwdgIMQZGfBcimwC-vn8z31JRim9QV_STOaKD8iymNPHGA5tOLzQ2tNNG11rX9HsHN28Ny5abNCGto6JfgSki87EUNFZvW_qFFpH19i6GHCXrsiF78ONvnNInu5ut7NFtnq4X86mq8wWwEXGwFurDDI0uS9QGC8mOpcGNaKz1nthjVVWKQAtRf-a1oWspGKGcV0pmQ_J-LRrY51SdL5sYthj7EoG5dFFeXRR_rjoAX0CPsPOdf-0y-l8vf1lvwBbzGPN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>4D Printing of Stretchable Supercapacitors via Hybrid Composite Materials</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhou, Yihao ; Parker, Charles B. ; Joshi, Pooran ; Naskar, Amit K. ; Glass, Jeffrey T. ; Cao, Changyong</creator><creatorcontrib>Zhou, Yihao ; Parker, Charles B. ; Joshi, Pooran ; Naskar, Amit K. ; Glass, Jeffrey T. ; Cao, Changyong</creatorcontrib><description>Stretchable supercapacitors (SCs) have attracted significant attention in developing power‐independent stretchable electronic systems due to their intrinsic energy storage function and unique mechanical properties. Most current SCs are generally limited by their low stretchability, complicated fabrication process, and insufficient performance and robustness. This study presents a facile method to fabricate arbitrary‐shaped stretchable electrodes via 4D printing of conductive composite from reduced graphene oxide, carbon nanotube, and poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate. The electrode patterns of an arbitrary shape can be deposited onto prestretched substrates by aerosol‐jet printing, then self‐organized origami (ridge) patterns are generated after releasing the substrates from holding stretchers due to the mismatched strains. The stretchable electrodes demonstrate superior mechanical robustness and stretchability without sacrificing its outstanding electrochemical performance. The symmetric SC prototype possesses a gravimetric capacitance of ≈21.7 F g−1 at a current density of 0.5 A g−1 and a capacitance retention of ≈85.8% from 0.5 to 5 A g−1. A SC array with arbitrary‐shaped electrodes is also fabricated and connected in series to power light‐emitting diode patterns for large‐scale applications. The proposed method paves avenues for scalable manufacturing of future energy‐storage devices with controlled extensibility and high electrochemical performance. A facile, fast, and low‐cost method for 4D printing of conductive composite via noncontact aerosol‐jet printing is developed to fabricate large‐area, arbitrary‐shaped, high‐performance, stretchable supercapacitors. The printed electrodes with an arbitrary shape onto prestretched substrates can generate self‐organized origami (ridge) patterns due to mechanical instability, enabling the extremely large deformation of the devices.</description><identifier>ISSN: 2365-709X</identifier><identifier>EISSN: 2365-709X</identifier><identifier>DOI: 10.1002/admt.202001055</identifier><language>eng</language><subject>4D printing ; aerosol‐jet printing ; hybrid composites ; self‐organized origami ; stretchable supercapacitors</subject><ispartof>Advanced materials technologies, 2021-01, Vol.6 (1), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4025-10fcc8ba1ab3f4a5bf57936ba9aaeccff5cbc8c88009650029946d681b129d863</citedby><cites>FETCH-LOGICAL-c4025-10fcc8ba1ab3f4a5bf57936ba9aaeccff5cbc8c88009650029946d681b129d863</cites><orcidid>0000-0001-5067-1716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmt.202001055$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmt.202001055$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhou, Yihao</creatorcontrib><creatorcontrib>Parker, Charles B.</creatorcontrib><creatorcontrib>Joshi, Pooran</creatorcontrib><creatorcontrib>Naskar, Amit K.</creatorcontrib><creatorcontrib>Glass, Jeffrey T.</creatorcontrib><creatorcontrib>Cao, Changyong</creatorcontrib><title>4D Printing of Stretchable Supercapacitors via Hybrid Composite Materials</title><title>Advanced materials technologies</title><description>Stretchable supercapacitors (SCs) have attracted significant attention in developing power‐independent stretchable electronic systems due to their intrinsic energy storage function and unique mechanical properties. Most current SCs are generally limited by their low stretchability, complicated fabrication process, and insufficient performance and robustness. This study presents a facile method to fabricate arbitrary‐shaped stretchable electrodes via 4D printing of conductive composite from reduced graphene oxide, carbon nanotube, and poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate. The electrode patterns of an arbitrary shape can be deposited onto prestretched substrates by aerosol‐jet printing, then self‐organized origami (ridge) patterns are generated after releasing the substrates from holding stretchers due to the mismatched strains. The stretchable electrodes demonstrate superior mechanical robustness and stretchability without sacrificing its outstanding electrochemical performance. The symmetric SC prototype possesses a gravimetric capacitance of ≈21.7 F g−1 at a current density of 0.5 A g−1 and a capacitance retention of ≈85.8% from 0.5 to 5 A g−1. A SC array with arbitrary‐shaped electrodes is also fabricated and connected in series to power light‐emitting diode patterns for large‐scale applications. The proposed method paves avenues for scalable manufacturing of future energy‐storage devices with controlled extensibility and high electrochemical performance. A facile, fast, and low‐cost method for 4D printing of conductive composite via noncontact aerosol‐jet printing is developed to fabricate large‐area, arbitrary‐shaped, high‐performance, stretchable supercapacitors. The printed electrodes with an arbitrary shape onto prestretched substrates can generate self‐organized origami (ridge) patterns due to mechanical instability, enabling the extremely large deformation of the devices.</description><subject>4D printing</subject><subject>aerosol‐jet printing</subject><subject>hybrid composites</subject><subject>self‐organized origami</subject><subject>stretchable supercapacitors</subject><issn>2365-709X</issn><issn>2365-709X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKAzEURYMoWGq3rvMDU18ykzRZllZtoUWhFdwNL5lEI21nSEZl_t4pFXXn6r7FPRfeIeSawZgB8Bus9u2YAwdgIMQZGfBcimwC-vn8z31JRim9QV_STOaKD8iymNPHGA5tOLzQ2tNNG11rX9HsHN28Ny5abNCGto6JfgSki87EUNFZvW_qFFpH19i6GHCXrsiF78ONvnNInu5ut7NFtnq4X86mq8wWwEXGwFurDDI0uS9QGC8mOpcGNaKz1nthjVVWKQAtRf-a1oWspGKGcV0pmQ_J-LRrY51SdL5sYthj7EoG5dFFeXRR_rjoAX0CPsPOdf-0y-l8vf1lvwBbzGPN</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Zhou, Yihao</creator><creator>Parker, Charles B.</creator><creator>Joshi, Pooran</creator><creator>Naskar, Amit K.</creator><creator>Glass, Jeffrey T.</creator><creator>Cao, Changyong</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5067-1716</orcidid></search><sort><creationdate>202101</creationdate><title>4D Printing of Stretchable Supercapacitors via Hybrid Composite Materials</title><author>Zhou, Yihao ; Parker, Charles B. ; Joshi, Pooran ; Naskar, Amit K. ; Glass, Jeffrey T. ; Cao, Changyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4025-10fcc8ba1ab3f4a5bf57936ba9aaeccff5cbc8c88009650029946d681b129d863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>4D printing</topic><topic>aerosol‐jet printing</topic><topic>hybrid composites</topic><topic>self‐organized origami</topic><topic>stretchable supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yihao</creatorcontrib><creatorcontrib>Parker, Charles B.</creatorcontrib><creatorcontrib>Joshi, Pooran</creatorcontrib><creatorcontrib>Naskar, Amit K.</creatorcontrib><creatorcontrib>Glass, Jeffrey T.</creatorcontrib><creatorcontrib>Cao, Changyong</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced materials technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yihao</au><au>Parker, Charles B.</au><au>Joshi, Pooran</au><au>Naskar, Amit K.</au><au>Glass, Jeffrey T.</au><au>Cao, Changyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>4D Printing of Stretchable Supercapacitors via Hybrid Composite Materials</atitle><jtitle>Advanced materials technologies</jtitle><date>2021-01</date><risdate>2021</risdate><volume>6</volume><issue>1</issue><epage>n/a</epage><issn>2365-709X</issn><eissn>2365-709X</eissn><abstract>Stretchable supercapacitors (SCs) have attracted significant attention in developing power‐independent stretchable electronic systems due to their intrinsic energy storage function and unique mechanical properties. Most current SCs are generally limited by their low stretchability, complicated fabrication process, and insufficient performance and robustness. This study presents a facile method to fabricate arbitrary‐shaped stretchable electrodes via 4D printing of conductive composite from reduced graphene oxide, carbon nanotube, and poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate. The electrode patterns of an arbitrary shape can be deposited onto prestretched substrates by aerosol‐jet printing, then self‐organized origami (ridge) patterns are generated after releasing the substrates from holding stretchers due to the mismatched strains. The stretchable electrodes demonstrate superior mechanical robustness and stretchability without sacrificing its outstanding electrochemical performance. The symmetric SC prototype possesses a gravimetric capacitance of ≈21.7 F g−1 at a current density of 0.5 A g−1 and a capacitance retention of ≈85.8% from 0.5 to 5 A g−1. A SC array with arbitrary‐shaped electrodes is also fabricated and connected in series to power light‐emitting diode patterns for large‐scale applications. The proposed method paves avenues for scalable manufacturing of future energy‐storage devices with controlled extensibility and high electrochemical performance. A facile, fast, and low‐cost method for 4D printing of conductive composite via noncontact aerosol‐jet printing is developed to fabricate large‐area, arbitrary‐shaped, high‐performance, stretchable supercapacitors. The printed electrodes with an arbitrary shape onto prestretched substrates can generate self‐organized origami (ridge) patterns due to mechanical instability, enabling the extremely large deformation of the devices.</abstract><doi>10.1002/admt.202001055</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5067-1716</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2365-709X
ispartof Advanced materials technologies, 2021-01, Vol.6 (1), p.n/a
issn 2365-709X
2365-709X
language eng
recordid cdi_crossref_primary_10_1002_admt_202001055
source Wiley Online Library Journals Frontfile Complete
subjects 4D printing
aerosol‐jet printing
hybrid composites
self‐organized origami
stretchable supercapacitors
title 4D Printing of Stretchable Supercapacitors via Hybrid Composite Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A29%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=4D%20Printing%20of%20Stretchable%20Supercapacitors%20via%20Hybrid%20Composite%20Materials&rft.jtitle=Advanced%20materials%20technologies&rft.au=Zhou,%20Yihao&rft.date=2021-01&rft.volume=6&rft.issue=1&rft.epage=n/a&rft.issn=2365-709X&rft.eissn=2365-709X&rft_id=info:doi/10.1002/admt.202001055&rft_dat=%3Cwiley_cross%3EADMT202001055%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true