4D Printing of Stretchable Supercapacitors via Hybrid Composite Materials
Stretchable supercapacitors (SCs) have attracted significant attention in developing power‐independent stretchable electronic systems due to their intrinsic energy storage function and unique mechanical properties. Most current SCs are generally limited by their low stretchability, complicated fabri...
Gespeichert in:
Veröffentlicht in: | Advanced materials technologies 2021-01, Vol.6 (1), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Advanced materials technologies |
container_volume | 6 |
creator | Zhou, Yihao Parker, Charles B. Joshi, Pooran Naskar, Amit K. Glass, Jeffrey T. Cao, Changyong |
description | Stretchable supercapacitors (SCs) have attracted significant attention in developing power‐independent stretchable electronic systems due to their intrinsic energy storage function and unique mechanical properties. Most current SCs are generally limited by their low stretchability, complicated fabrication process, and insufficient performance and robustness. This study presents a facile method to fabricate arbitrary‐shaped stretchable electrodes via 4D printing of conductive composite from reduced graphene oxide, carbon nanotube, and poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate. The electrode patterns of an arbitrary shape can be deposited onto prestretched substrates by aerosol‐jet printing, then self‐organized origami (ridge) patterns are generated after releasing the substrates from holding stretchers due to the mismatched strains. The stretchable electrodes demonstrate superior mechanical robustness and stretchability without sacrificing its outstanding electrochemical performance. The symmetric SC prototype possesses a gravimetric capacitance of ≈21.7 F g−1 at a current density of 0.5 A g−1 and a capacitance retention of ≈85.8% from 0.5 to 5 A g−1. A SC array with arbitrary‐shaped electrodes is also fabricated and connected in series to power light‐emitting diode patterns for large‐scale applications. The proposed method paves avenues for scalable manufacturing of future energy‐storage devices with controlled extensibility and high electrochemical performance.
A facile, fast, and low‐cost method for 4D printing of conductive composite via noncontact aerosol‐jet printing is developed to fabricate large‐area, arbitrary‐shaped, high‐performance, stretchable supercapacitors. The printed electrodes with an arbitrary shape onto prestretched substrates can generate self‐organized origami (ridge) patterns due to mechanical instability, enabling the extremely large deformation of the devices. |
doi_str_mv | 10.1002/admt.202001055 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_admt_202001055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADMT202001055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4025-10fcc8ba1ab3f4a5bf57936ba9aaeccff5cbc8c88009650029946d681b129d863</originalsourceid><addsrcrecordid>eNqFkMFKAzEURYMoWGq3rvMDU18ykzRZllZtoUWhFdwNL5lEI21nSEZl_t4pFXXn6r7FPRfeIeSawZgB8Bus9u2YAwdgIMQZGfBcimwC-vn8z31JRim9QV_STOaKD8iymNPHGA5tOLzQ2tNNG11rX9HsHN28Ny5abNCGto6JfgSki87EUNFZvW_qFFpH19i6GHCXrsiF78ONvnNInu5ut7NFtnq4X86mq8wWwEXGwFurDDI0uS9QGC8mOpcGNaKz1nthjVVWKQAtRf-a1oWspGKGcV0pmQ_J-LRrY51SdL5sYthj7EoG5dFFeXRR_rjoAX0CPsPOdf-0y-l8vf1lvwBbzGPN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>4D Printing of Stretchable Supercapacitors via Hybrid Composite Materials</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhou, Yihao ; Parker, Charles B. ; Joshi, Pooran ; Naskar, Amit K. ; Glass, Jeffrey T. ; Cao, Changyong</creator><creatorcontrib>Zhou, Yihao ; Parker, Charles B. ; Joshi, Pooran ; Naskar, Amit K. ; Glass, Jeffrey T. ; Cao, Changyong</creatorcontrib><description>Stretchable supercapacitors (SCs) have attracted significant attention in developing power‐independent stretchable electronic systems due to their intrinsic energy storage function and unique mechanical properties. Most current SCs are generally limited by their low stretchability, complicated fabrication process, and insufficient performance and robustness. This study presents a facile method to fabricate arbitrary‐shaped stretchable electrodes via 4D printing of conductive composite from reduced graphene oxide, carbon nanotube, and poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate. The electrode patterns of an arbitrary shape can be deposited onto prestretched substrates by aerosol‐jet printing, then self‐organized origami (ridge) patterns are generated after releasing the substrates from holding stretchers due to the mismatched strains. The stretchable electrodes demonstrate superior mechanical robustness and stretchability without sacrificing its outstanding electrochemical performance. The symmetric SC prototype possesses a gravimetric capacitance of ≈21.7 F g−1 at a current density of 0.5 A g−1 and a capacitance retention of ≈85.8% from 0.5 to 5 A g−1. A SC array with arbitrary‐shaped electrodes is also fabricated and connected in series to power light‐emitting diode patterns for large‐scale applications. The proposed method paves avenues for scalable manufacturing of future energy‐storage devices with controlled extensibility and high electrochemical performance.
A facile, fast, and low‐cost method for 4D printing of conductive composite via noncontact aerosol‐jet printing is developed to fabricate large‐area, arbitrary‐shaped, high‐performance, stretchable supercapacitors. The printed electrodes with an arbitrary shape onto prestretched substrates can generate self‐organized origami (ridge) patterns due to mechanical instability, enabling the extremely large deformation of the devices.</description><identifier>ISSN: 2365-709X</identifier><identifier>EISSN: 2365-709X</identifier><identifier>DOI: 10.1002/admt.202001055</identifier><language>eng</language><subject>4D printing ; aerosol‐jet printing ; hybrid composites ; self‐organized origami ; stretchable supercapacitors</subject><ispartof>Advanced materials technologies, 2021-01, Vol.6 (1), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4025-10fcc8ba1ab3f4a5bf57936ba9aaeccff5cbc8c88009650029946d681b129d863</citedby><cites>FETCH-LOGICAL-c4025-10fcc8ba1ab3f4a5bf57936ba9aaeccff5cbc8c88009650029946d681b129d863</cites><orcidid>0000-0001-5067-1716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmt.202001055$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmt.202001055$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhou, Yihao</creatorcontrib><creatorcontrib>Parker, Charles B.</creatorcontrib><creatorcontrib>Joshi, Pooran</creatorcontrib><creatorcontrib>Naskar, Amit K.</creatorcontrib><creatorcontrib>Glass, Jeffrey T.</creatorcontrib><creatorcontrib>Cao, Changyong</creatorcontrib><title>4D Printing of Stretchable Supercapacitors via Hybrid Composite Materials</title><title>Advanced materials technologies</title><description>Stretchable supercapacitors (SCs) have attracted significant attention in developing power‐independent stretchable electronic systems due to their intrinsic energy storage function and unique mechanical properties. Most current SCs are generally limited by their low stretchability, complicated fabrication process, and insufficient performance and robustness. This study presents a facile method to fabricate arbitrary‐shaped stretchable electrodes via 4D printing of conductive composite from reduced graphene oxide, carbon nanotube, and poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate. The electrode patterns of an arbitrary shape can be deposited onto prestretched substrates by aerosol‐jet printing, then self‐organized origami (ridge) patterns are generated after releasing the substrates from holding stretchers due to the mismatched strains. The stretchable electrodes demonstrate superior mechanical robustness and stretchability without sacrificing its outstanding electrochemical performance. The symmetric SC prototype possesses a gravimetric capacitance of ≈21.7 F g−1 at a current density of 0.5 A g−1 and a capacitance retention of ≈85.8% from 0.5 to 5 A g−1. A SC array with arbitrary‐shaped electrodes is also fabricated and connected in series to power light‐emitting diode patterns for large‐scale applications. The proposed method paves avenues for scalable manufacturing of future energy‐storage devices with controlled extensibility and high electrochemical performance.
A facile, fast, and low‐cost method for 4D printing of conductive composite via noncontact aerosol‐jet printing is developed to fabricate large‐area, arbitrary‐shaped, high‐performance, stretchable supercapacitors. The printed electrodes with an arbitrary shape onto prestretched substrates can generate self‐organized origami (ridge) patterns due to mechanical instability, enabling the extremely large deformation of the devices.</description><subject>4D printing</subject><subject>aerosol‐jet printing</subject><subject>hybrid composites</subject><subject>self‐organized origami</subject><subject>stretchable supercapacitors</subject><issn>2365-709X</issn><issn>2365-709X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKAzEURYMoWGq3rvMDU18ykzRZllZtoUWhFdwNL5lEI21nSEZl_t4pFXXn6r7FPRfeIeSawZgB8Bus9u2YAwdgIMQZGfBcimwC-vn8z31JRim9QV_STOaKD8iymNPHGA5tOLzQ2tNNG11rX9HsHN28Ny5abNCGto6JfgSki87EUNFZvW_qFFpH19i6GHCXrsiF78ONvnNInu5ut7NFtnq4X86mq8wWwEXGwFurDDI0uS9QGC8mOpcGNaKz1nthjVVWKQAtRf-a1oWspGKGcV0pmQ_J-LRrY51SdL5sYthj7EoG5dFFeXRR_rjoAX0CPsPOdf-0y-l8vf1lvwBbzGPN</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Zhou, Yihao</creator><creator>Parker, Charles B.</creator><creator>Joshi, Pooran</creator><creator>Naskar, Amit K.</creator><creator>Glass, Jeffrey T.</creator><creator>Cao, Changyong</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5067-1716</orcidid></search><sort><creationdate>202101</creationdate><title>4D Printing of Stretchable Supercapacitors via Hybrid Composite Materials</title><author>Zhou, Yihao ; Parker, Charles B. ; Joshi, Pooran ; Naskar, Amit K. ; Glass, Jeffrey T. ; Cao, Changyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4025-10fcc8ba1ab3f4a5bf57936ba9aaeccff5cbc8c88009650029946d681b129d863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>4D printing</topic><topic>aerosol‐jet printing</topic><topic>hybrid composites</topic><topic>self‐organized origami</topic><topic>stretchable supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yihao</creatorcontrib><creatorcontrib>Parker, Charles B.</creatorcontrib><creatorcontrib>Joshi, Pooran</creatorcontrib><creatorcontrib>Naskar, Amit K.</creatorcontrib><creatorcontrib>Glass, Jeffrey T.</creatorcontrib><creatorcontrib>Cao, Changyong</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced materials technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yihao</au><au>Parker, Charles B.</au><au>Joshi, Pooran</au><au>Naskar, Amit K.</au><au>Glass, Jeffrey T.</au><au>Cao, Changyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>4D Printing of Stretchable Supercapacitors via Hybrid Composite Materials</atitle><jtitle>Advanced materials technologies</jtitle><date>2021-01</date><risdate>2021</risdate><volume>6</volume><issue>1</issue><epage>n/a</epage><issn>2365-709X</issn><eissn>2365-709X</eissn><abstract>Stretchable supercapacitors (SCs) have attracted significant attention in developing power‐independent stretchable electronic systems due to their intrinsic energy storage function and unique mechanical properties. Most current SCs are generally limited by their low stretchability, complicated fabrication process, and insufficient performance and robustness. This study presents a facile method to fabricate arbitrary‐shaped stretchable electrodes via 4D printing of conductive composite from reduced graphene oxide, carbon nanotube, and poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate. The electrode patterns of an arbitrary shape can be deposited onto prestretched substrates by aerosol‐jet printing, then self‐organized origami (ridge) patterns are generated after releasing the substrates from holding stretchers due to the mismatched strains. The stretchable electrodes demonstrate superior mechanical robustness and stretchability without sacrificing its outstanding electrochemical performance. The symmetric SC prototype possesses a gravimetric capacitance of ≈21.7 F g−1 at a current density of 0.5 A g−1 and a capacitance retention of ≈85.8% from 0.5 to 5 A g−1. A SC array with arbitrary‐shaped electrodes is also fabricated and connected in series to power light‐emitting diode patterns for large‐scale applications. The proposed method paves avenues for scalable manufacturing of future energy‐storage devices with controlled extensibility and high electrochemical performance.
A facile, fast, and low‐cost method for 4D printing of conductive composite via noncontact aerosol‐jet printing is developed to fabricate large‐area, arbitrary‐shaped, high‐performance, stretchable supercapacitors. The printed electrodes with an arbitrary shape onto prestretched substrates can generate self‐organized origami (ridge) patterns due to mechanical instability, enabling the extremely large deformation of the devices.</abstract><doi>10.1002/admt.202001055</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5067-1716</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2365-709X |
ispartof | Advanced materials technologies, 2021-01, Vol.6 (1), p.n/a |
issn | 2365-709X 2365-709X |
language | eng |
recordid | cdi_crossref_primary_10_1002_admt_202001055 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 4D printing aerosol‐jet printing hybrid composites self‐organized origami stretchable supercapacitors |
title | 4D Printing of Stretchable Supercapacitors via Hybrid Composite Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A29%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=4D%20Printing%20of%20Stretchable%20Supercapacitors%20via%20Hybrid%20Composite%20Materials&rft.jtitle=Advanced%20materials%20technologies&rft.au=Zhou,%20Yihao&rft.date=2021-01&rft.volume=6&rft.issue=1&rft.epage=n/a&rft.issn=2365-709X&rft.eissn=2365-709X&rft_id=info:doi/10.1002/admt.202001055&rft_dat=%3Cwiley_cross%3EADMT202001055%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |