Miniaturized Magnetic Sensors for Implantable Magnetomyography

Magnetism‐based systems are widely utilized for sensing and imaging biological phenomena, for example, the activity of the brain and the heart. Magnetomyography (MMG) is the study of muscle function through the inquiry of the magnetic signal that a muscle generates when contracted. Within the last f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials technologies 2020-06, Vol.5 (6), p.n/a
Hauptverfasser: Zuo, Siming, Heidari, Hadi, Farina, Dario, Nazarpour, Kianoush
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Advanced materials technologies
container_volume 5
creator Zuo, Siming
Heidari, Hadi
Farina, Dario
Nazarpour, Kianoush
description Magnetism‐based systems are widely utilized for sensing and imaging biological phenomena, for example, the activity of the brain and the heart. Magnetomyography (MMG) is the study of muscle function through the inquiry of the magnetic signal that a muscle generates when contracted. Within the last few decades, extensive effort has been invested to identify, characterize and quantify the magnetomyogram signals. However, it is still far from a miniaturized, sensitive, inexpensive and low‐power MMG sensor. Herein, the state‐of‐the‐art magnetic sensing technologies that have the potential to realize a low‐profile implantable MMG sensor are described. The technical challenges associated with the detection of the MMG signals, including the magnetic field of the Earth and movement artifacts are also discussed. Then, the development of efficient magnetic technologies, which enable sensing pico‐Tesla signals, is advocated to revitalize the MMG technique. To conclude, spintronic‐based magnetoresistive sensing can be an appropriate technology for miniaturized wearable and implantable MMG systems. The state‐of‐the‐art biomagnetic sensing technologies for implantable magnetomyography (MMG) to study muscle function through the inquiry of the magnetic signal that a muscle generates when contracted are described here. The technical challenges associated with the MMG signals detection and the development of innovative technologies, e.g., spintronic‐based magnetoresistors, which enable sensing pico‐Tesla signals, are advocated to revitalize the MMG technique.
doi_str_mv 10.1002/admt.202000185
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_admt_202000185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADMT202000185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3665-8f31abacbe06663ae022a7fc2e9ef3a4928d5d499cbd80822c089fddd78108ff3</originalsourceid><addsrcrecordid>eNqFkEtLw0AQgBdRsNRePecPpM7uNpvdi1Dqq9DgwQrewmQfNZIXuxGJv74NLerN08zh-2bgI-SawpwCsBs0dT9nwACAyuSMTBgXSZyCejv_s1-SWQgfI6Oo4JJNyG1WNiX2n778tibKcNfYvtTRi21C60PkWh-t667CpseisiegrYd257F7H67IhcMq2NlpTsnrw_129RRvnh_Xq-Um1lwcfkvHKRaoCwtCCI4WGMPUaWaVdRwXikmTmIVSujASJGMapHLGmFRSkM7xKZkf72rfhuCtyztf1uiHnEI-BsjHAPlPgIOgjsJXWdnhHzpf3mXbX3cPOsRg3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Miniaturized Magnetic Sensors for Implantable Magnetomyography</title><source>Wiley Online Library All Journals</source><creator>Zuo, Siming ; Heidari, Hadi ; Farina, Dario ; Nazarpour, Kianoush</creator><creatorcontrib>Zuo, Siming ; Heidari, Hadi ; Farina, Dario ; Nazarpour, Kianoush</creatorcontrib><description>Magnetism‐based systems are widely utilized for sensing and imaging biological phenomena, for example, the activity of the brain and the heart. Magnetomyography (MMG) is the study of muscle function through the inquiry of the magnetic signal that a muscle generates when contracted. Within the last few decades, extensive effort has been invested to identify, characterize and quantify the magnetomyogram signals. However, it is still far from a miniaturized, sensitive, inexpensive and low‐power MMG sensor. Herein, the state‐of‐the‐art magnetic sensing technologies that have the potential to realize a low‐profile implantable MMG sensor are described. The technical challenges associated with the detection of the MMG signals, including the magnetic field of the Earth and movement artifacts are also discussed. Then, the development of efficient magnetic technologies, which enable sensing pico‐Tesla signals, is advocated to revitalize the MMG technique. To conclude, spintronic‐based magnetoresistive sensing can be an appropriate technology for miniaturized wearable and implantable MMG systems. The state‐of‐the‐art biomagnetic sensing technologies for implantable magnetomyography (MMG) to study muscle function through the inquiry of the magnetic signal that a muscle generates when contracted are described here. The technical challenges associated with the MMG signals detection and the development of innovative technologies, e.g., spintronic‐based magnetoresistors, which enable sensing pico‐Tesla signals, are advocated to revitalize the MMG technique.</description><identifier>ISSN: 2365-709X</identifier><identifier>EISSN: 2365-709X</identifier><identifier>DOI: 10.1002/admt.202000185</identifier><language>eng</language><subject>implantable devices ; magnetic sensors ; magnetomyography ; magnetoresistive effects ; muscles</subject><ispartof>Advanced materials technologies, 2020-06, Vol.5 (6), p.n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3665-8f31abacbe06663ae022a7fc2e9ef3a4928d5d499cbd80822c089fddd78108ff3</citedby><cites>FETCH-LOGICAL-c3665-8f31abacbe06663ae022a7fc2e9ef3a4928d5d499cbd80822c089fddd78108ff3</cites><orcidid>0000-0001-8412-8164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmt.202000185$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmt.202000185$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zuo, Siming</creatorcontrib><creatorcontrib>Heidari, Hadi</creatorcontrib><creatorcontrib>Farina, Dario</creatorcontrib><creatorcontrib>Nazarpour, Kianoush</creatorcontrib><title>Miniaturized Magnetic Sensors for Implantable Magnetomyography</title><title>Advanced materials technologies</title><description>Magnetism‐based systems are widely utilized for sensing and imaging biological phenomena, for example, the activity of the brain and the heart. Magnetomyography (MMG) is the study of muscle function through the inquiry of the magnetic signal that a muscle generates when contracted. Within the last few decades, extensive effort has been invested to identify, characterize and quantify the magnetomyogram signals. However, it is still far from a miniaturized, sensitive, inexpensive and low‐power MMG sensor. Herein, the state‐of‐the‐art magnetic sensing technologies that have the potential to realize a low‐profile implantable MMG sensor are described. The technical challenges associated with the detection of the MMG signals, including the magnetic field of the Earth and movement artifacts are also discussed. Then, the development of efficient magnetic technologies, which enable sensing pico‐Tesla signals, is advocated to revitalize the MMG technique. To conclude, spintronic‐based magnetoresistive sensing can be an appropriate technology for miniaturized wearable and implantable MMG systems. The state‐of‐the‐art biomagnetic sensing technologies for implantable magnetomyography (MMG) to study muscle function through the inquiry of the magnetic signal that a muscle generates when contracted are described here. The technical challenges associated with the MMG signals detection and the development of innovative technologies, e.g., spintronic‐based magnetoresistors, which enable sensing pico‐Tesla signals, are advocated to revitalize the MMG technique.</description><subject>implantable devices</subject><subject>magnetic sensors</subject><subject>magnetomyography</subject><subject>magnetoresistive effects</subject><subject>muscles</subject><issn>2365-709X</issn><issn>2365-709X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkEtLw0AQgBdRsNRePecPpM7uNpvdi1Dqq9DgwQrewmQfNZIXuxGJv74NLerN08zh-2bgI-SawpwCsBs0dT9nwACAyuSMTBgXSZyCejv_s1-SWQgfI6Oo4JJNyG1WNiX2n778tibKcNfYvtTRi21C60PkWh-t667CpseisiegrYd257F7H67IhcMq2NlpTsnrw_129RRvnh_Xq-Um1lwcfkvHKRaoCwtCCI4WGMPUaWaVdRwXikmTmIVSujASJGMapHLGmFRSkM7xKZkf72rfhuCtyztf1uiHnEI-BsjHAPlPgIOgjsJXWdnhHzpf3mXbX3cPOsRg3Q</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Zuo, Siming</creator><creator>Heidari, Hadi</creator><creator>Farina, Dario</creator><creator>Nazarpour, Kianoush</creator><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8412-8164</orcidid></search><sort><creationdate>202006</creationdate><title>Miniaturized Magnetic Sensors for Implantable Magnetomyography</title><author>Zuo, Siming ; Heidari, Hadi ; Farina, Dario ; Nazarpour, Kianoush</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3665-8f31abacbe06663ae022a7fc2e9ef3a4928d5d499cbd80822c089fddd78108ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>implantable devices</topic><topic>magnetic sensors</topic><topic>magnetomyography</topic><topic>magnetoresistive effects</topic><topic>muscles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Siming</creatorcontrib><creatorcontrib>Heidari, Hadi</creatorcontrib><creatorcontrib>Farina, Dario</creatorcontrib><creatorcontrib>Nazarpour, Kianoush</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>Advanced materials technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuo, Siming</au><au>Heidari, Hadi</au><au>Farina, Dario</au><au>Nazarpour, Kianoush</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Miniaturized Magnetic Sensors for Implantable Magnetomyography</atitle><jtitle>Advanced materials technologies</jtitle><date>2020-06</date><risdate>2020</risdate><volume>5</volume><issue>6</issue><epage>n/a</epage><issn>2365-709X</issn><eissn>2365-709X</eissn><abstract>Magnetism‐based systems are widely utilized for sensing and imaging biological phenomena, for example, the activity of the brain and the heart. Magnetomyography (MMG) is the study of muscle function through the inquiry of the magnetic signal that a muscle generates when contracted. Within the last few decades, extensive effort has been invested to identify, characterize and quantify the magnetomyogram signals. However, it is still far from a miniaturized, sensitive, inexpensive and low‐power MMG sensor. Herein, the state‐of‐the‐art magnetic sensing technologies that have the potential to realize a low‐profile implantable MMG sensor are described. The technical challenges associated with the detection of the MMG signals, including the magnetic field of the Earth and movement artifacts are also discussed. Then, the development of efficient magnetic technologies, which enable sensing pico‐Tesla signals, is advocated to revitalize the MMG technique. To conclude, spintronic‐based magnetoresistive sensing can be an appropriate technology for miniaturized wearable and implantable MMG systems. The state‐of‐the‐art biomagnetic sensing technologies for implantable magnetomyography (MMG) to study muscle function through the inquiry of the magnetic signal that a muscle generates when contracted are described here. The technical challenges associated with the MMG signals detection and the development of innovative technologies, e.g., spintronic‐based magnetoresistors, which enable sensing pico‐Tesla signals, are advocated to revitalize the MMG technique.</abstract><doi>10.1002/admt.202000185</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8412-8164</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2365-709X
ispartof Advanced materials technologies, 2020-06, Vol.5 (6), p.n/a
issn 2365-709X
2365-709X
language eng
recordid cdi_crossref_primary_10_1002_admt_202000185
source Wiley Online Library All Journals
subjects implantable devices
magnetic sensors
magnetomyography
magnetoresistive effects
muscles
title Miniaturized Magnetic Sensors for Implantable Magnetomyography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Miniaturized%20Magnetic%20Sensors%20for%20Implantable%20Magnetomyography&rft.jtitle=Advanced%20materials%20technologies&rft.au=Zuo,%20Siming&rft.date=2020-06&rft.volume=5&rft.issue=6&rft.epage=n/a&rft.issn=2365-709X&rft.eissn=2365-709X&rft_id=info:doi/10.1002/admt.202000185&rft_dat=%3Cwiley_cross%3EADMT202000185%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true