Miniaturized Magnetic Sensors for Implantable Magnetomyography
Magnetism‐based systems are widely utilized for sensing and imaging biological phenomena, for example, the activity of the brain and the heart. Magnetomyography (MMG) is the study of muscle function through the inquiry of the magnetic signal that a muscle generates when contracted. Within the last f...
Gespeichert in:
Veröffentlicht in: | Advanced materials technologies 2020-06, Vol.5 (6), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Advanced materials technologies |
container_volume | 5 |
creator | Zuo, Siming Heidari, Hadi Farina, Dario Nazarpour, Kianoush |
description | Magnetism‐based systems are widely utilized for sensing and imaging biological phenomena, for example, the activity of the brain and the heart. Magnetomyography (MMG) is the study of muscle function through the inquiry of the magnetic signal that a muscle generates when contracted. Within the last few decades, extensive effort has been invested to identify, characterize and quantify the magnetomyogram signals. However, it is still far from a miniaturized, sensitive, inexpensive and low‐power MMG sensor. Herein, the state‐of‐the‐art magnetic sensing technologies that have the potential to realize a low‐profile implantable MMG sensor are described. The technical challenges associated with the detection of the MMG signals, including the magnetic field of the Earth and movement artifacts are also discussed. Then, the development of efficient magnetic technologies, which enable sensing pico‐Tesla signals, is advocated to revitalize the MMG technique. To conclude, spintronic‐based magnetoresistive sensing can be an appropriate technology for miniaturized wearable and implantable MMG systems.
The state‐of‐the‐art biomagnetic sensing technologies for implantable magnetomyography (MMG) to study muscle function through the inquiry of the magnetic signal that a muscle generates when contracted are described here. The technical challenges associated with the MMG signals detection and the development of innovative technologies, e.g., spintronic‐based magnetoresistors, which enable sensing pico‐Tesla signals, are advocated to revitalize the MMG technique. |
doi_str_mv | 10.1002/admt.202000185 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_admt_202000185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADMT202000185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3665-8f31abacbe06663ae022a7fc2e9ef3a4928d5d499cbd80822c089fddd78108ff3</originalsourceid><addsrcrecordid>eNqFkEtLw0AQgBdRsNRePecPpM7uNpvdi1Dqq9DgwQrewmQfNZIXuxGJv74NLerN08zh-2bgI-SawpwCsBs0dT9nwACAyuSMTBgXSZyCejv_s1-SWQgfI6Oo4JJNyG1WNiX2n778tibKcNfYvtTRi21C60PkWh-t667CpseisiegrYd257F7H67IhcMq2NlpTsnrw_129RRvnh_Xq-Um1lwcfkvHKRaoCwtCCI4WGMPUaWaVdRwXikmTmIVSujASJGMapHLGmFRSkM7xKZkf72rfhuCtyztf1uiHnEI-BsjHAPlPgIOgjsJXWdnhHzpf3mXbX3cPOsRg3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Miniaturized Magnetic Sensors for Implantable Magnetomyography</title><source>Wiley Online Library All Journals</source><creator>Zuo, Siming ; Heidari, Hadi ; Farina, Dario ; Nazarpour, Kianoush</creator><creatorcontrib>Zuo, Siming ; Heidari, Hadi ; Farina, Dario ; Nazarpour, Kianoush</creatorcontrib><description>Magnetism‐based systems are widely utilized for sensing and imaging biological phenomena, for example, the activity of the brain and the heart. Magnetomyography (MMG) is the study of muscle function through the inquiry of the magnetic signal that a muscle generates when contracted. Within the last few decades, extensive effort has been invested to identify, characterize and quantify the magnetomyogram signals. However, it is still far from a miniaturized, sensitive, inexpensive and low‐power MMG sensor. Herein, the state‐of‐the‐art magnetic sensing technologies that have the potential to realize a low‐profile implantable MMG sensor are described. The technical challenges associated with the detection of the MMG signals, including the magnetic field of the Earth and movement artifacts are also discussed. Then, the development of efficient magnetic technologies, which enable sensing pico‐Tesla signals, is advocated to revitalize the MMG technique. To conclude, spintronic‐based magnetoresistive sensing can be an appropriate technology for miniaturized wearable and implantable MMG systems.
The state‐of‐the‐art biomagnetic sensing technologies for implantable magnetomyography (MMG) to study muscle function through the inquiry of the magnetic signal that a muscle generates when contracted are described here. The technical challenges associated with the MMG signals detection and the development of innovative technologies, e.g., spintronic‐based magnetoresistors, which enable sensing pico‐Tesla signals, are advocated to revitalize the MMG technique.</description><identifier>ISSN: 2365-709X</identifier><identifier>EISSN: 2365-709X</identifier><identifier>DOI: 10.1002/admt.202000185</identifier><language>eng</language><subject>implantable devices ; magnetic sensors ; magnetomyography ; magnetoresistive effects ; muscles</subject><ispartof>Advanced materials technologies, 2020-06, Vol.5 (6), p.n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3665-8f31abacbe06663ae022a7fc2e9ef3a4928d5d499cbd80822c089fddd78108ff3</citedby><cites>FETCH-LOGICAL-c3665-8f31abacbe06663ae022a7fc2e9ef3a4928d5d499cbd80822c089fddd78108ff3</cites><orcidid>0000-0001-8412-8164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmt.202000185$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmt.202000185$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zuo, Siming</creatorcontrib><creatorcontrib>Heidari, Hadi</creatorcontrib><creatorcontrib>Farina, Dario</creatorcontrib><creatorcontrib>Nazarpour, Kianoush</creatorcontrib><title>Miniaturized Magnetic Sensors for Implantable Magnetomyography</title><title>Advanced materials technologies</title><description>Magnetism‐based systems are widely utilized for sensing and imaging biological phenomena, for example, the activity of the brain and the heart. Magnetomyography (MMG) is the study of muscle function through the inquiry of the magnetic signal that a muscle generates when contracted. Within the last few decades, extensive effort has been invested to identify, characterize and quantify the magnetomyogram signals. However, it is still far from a miniaturized, sensitive, inexpensive and low‐power MMG sensor. Herein, the state‐of‐the‐art magnetic sensing technologies that have the potential to realize a low‐profile implantable MMG sensor are described. The technical challenges associated with the detection of the MMG signals, including the magnetic field of the Earth and movement artifacts are also discussed. Then, the development of efficient magnetic technologies, which enable sensing pico‐Tesla signals, is advocated to revitalize the MMG technique. To conclude, spintronic‐based magnetoresistive sensing can be an appropriate technology for miniaturized wearable and implantable MMG systems.
The state‐of‐the‐art biomagnetic sensing technologies for implantable magnetomyography (MMG) to study muscle function through the inquiry of the magnetic signal that a muscle generates when contracted are described here. The technical challenges associated with the MMG signals detection and the development of innovative technologies, e.g., spintronic‐based magnetoresistors, which enable sensing pico‐Tesla signals, are advocated to revitalize the MMG technique.</description><subject>implantable devices</subject><subject>magnetic sensors</subject><subject>magnetomyography</subject><subject>magnetoresistive effects</subject><subject>muscles</subject><issn>2365-709X</issn><issn>2365-709X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkEtLw0AQgBdRsNRePecPpM7uNpvdi1Dqq9DgwQrewmQfNZIXuxGJv74NLerN08zh-2bgI-SawpwCsBs0dT9nwACAyuSMTBgXSZyCejv_s1-SWQgfI6Oo4JJNyG1WNiX2n778tibKcNfYvtTRi21C60PkWh-t667CpseisiegrYd257F7H67IhcMq2NlpTsnrw_129RRvnh_Xq-Um1lwcfkvHKRaoCwtCCI4WGMPUaWaVdRwXikmTmIVSujASJGMapHLGmFRSkM7xKZkf72rfhuCtyztf1uiHnEI-BsjHAPlPgIOgjsJXWdnhHzpf3mXbX3cPOsRg3Q</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Zuo, Siming</creator><creator>Heidari, Hadi</creator><creator>Farina, Dario</creator><creator>Nazarpour, Kianoush</creator><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8412-8164</orcidid></search><sort><creationdate>202006</creationdate><title>Miniaturized Magnetic Sensors for Implantable Magnetomyography</title><author>Zuo, Siming ; Heidari, Hadi ; Farina, Dario ; Nazarpour, Kianoush</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3665-8f31abacbe06663ae022a7fc2e9ef3a4928d5d499cbd80822c089fddd78108ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>implantable devices</topic><topic>magnetic sensors</topic><topic>magnetomyography</topic><topic>magnetoresistive effects</topic><topic>muscles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Siming</creatorcontrib><creatorcontrib>Heidari, Hadi</creatorcontrib><creatorcontrib>Farina, Dario</creatorcontrib><creatorcontrib>Nazarpour, Kianoush</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>Advanced materials technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuo, Siming</au><au>Heidari, Hadi</au><au>Farina, Dario</au><au>Nazarpour, Kianoush</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Miniaturized Magnetic Sensors for Implantable Magnetomyography</atitle><jtitle>Advanced materials technologies</jtitle><date>2020-06</date><risdate>2020</risdate><volume>5</volume><issue>6</issue><epage>n/a</epage><issn>2365-709X</issn><eissn>2365-709X</eissn><abstract>Magnetism‐based systems are widely utilized for sensing and imaging biological phenomena, for example, the activity of the brain and the heart. Magnetomyography (MMG) is the study of muscle function through the inquiry of the magnetic signal that a muscle generates when contracted. Within the last few decades, extensive effort has been invested to identify, characterize and quantify the magnetomyogram signals. However, it is still far from a miniaturized, sensitive, inexpensive and low‐power MMG sensor. Herein, the state‐of‐the‐art magnetic sensing technologies that have the potential to realize a low‐profile implantable MMG sensor are described. The technical challenges associated with the detection of the MMG signals, including the magnetic field of the Earth and movement artifacts are also discussed. Then, the development of efficient magnetic technologies, which enable sensing pico‐Tesla signals, is advocated to revitalize the MMG technique. To conclude, spintronic‐based magnetoresistive sensing can be an appropriate technology for miniaturized wearable and implantable MMG systems.
The state‐of‐the‐art biomagnetic sensing technologies for implantable magnetomyography (MMG) to study muscle function through the inquiry of the magnetic signal that a muscle generates when contracted are described here. The technical challenges associated with the MMG signals detection and the development of innovative technologies, e.g., spintronic‐based magnetoresistors, which enable sensing pico‐Tesla signals, are advocated to revitalize the MMG technique.</abstract><doi>10.1002/admt.202000185</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8412-8164</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2365-709X |
ispartof | Advanced materials technologies, 2020-06, Vol.5 (6), p.n/a |
issn | 2365-709X 2365-709X |
language | eng |
recordid | cdi_crossref_primary_10_1002_admt_202000185 |
source | Wiley Online Library All Journals |
subjects | implantable devices magnetic sensors magnetomyography magnetoresistive effects muscles |
title | Miniaturized Magnetic Sensors for Implantable Magnetomyography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Miniaturized%20Magnetic%20Sensors%20for%20Implantable%20Magnetomyography&rft.jtitle=Advanced%20materials%20technologies&rft.au=Zuo,%20Siming&rft.date=2020-06&rft.volume=5&rft.issue=6&rft.epage=n/a&rft.issn=2365-709X&rft.eissn=2365-709X&rft_id=info:doi/10.1002/admt.202000185&rft_dat=%3Cwiley_cross%3EADMT202000185%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |