High Throughput Nanoliposome Formation Using 3D Printed Microfluidic Flow Focusing Chips

The use of additive manufacturing to fabricate microfluidic devices capable of high throughout synthesis of nanoscale liposomes with tunable dimensions is demonstrated. Employing a high‐resolution 3D printing process based on stereolithography and digital light projection, microchannel geometries an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials technologies 2019-06, Vol.4 (6), p.n/a
Hauptverfasser: Chen, Zhu, Han, Jung Yeon, Shumate, Laura, Fedak, Renee, DeVoe, Don L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Advanced materials technologies
container_volume 4
creator Chen, Zhu
Han, Jung Yeon
Shumate, Laura
Fedak, Renee
DeVoe, Don L.
description The use of additive manufacturing to fabricate microfluidic devices capable of high throughout synthesis of nanoscale liposomes with tunable dimensions is demonstrated. Employing a high‐resolution 3D printing process based on stereolithography and digital light projection, microchannel geometries and printing parameters are optimized to enable reliable patterning of channel features with critical dimensions of 200 µm, supporting the production of lipid vesicles below 100 nm in diameter by microfluidic flow focusing. The additive manufacturing approach enables the fabrication of flow focusing microchannels with high aspect ratios, together with seamless fabrication of high‐pressure fluidic ports for world‐to‐chip interfacing, supporting large volumetric flow rates and high‐throughput nanoparticle synthesis, with demonstrated production rates for optimized liposomes as high as 4 mg min−1 from a single device. High‐resolution 3D printing is explored for the fabrication of microfluidic flow focusing devices supporting high throughput liposome production. By optimizing printing parameters and device design, integrated chips enabling the production of lipid vesicles below 100 nm in diameter are demonstrated, with liposome production rates up to 4 mg min−1 from a single device.
doi_str_mv 10.1002/admt.201800511
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_admt_201800511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADMT201800511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3471-fe66d78cae4c5409d0a67ea8d97e6da82ffeb7b310ce600cabf482d4901bc663</originalsourceid><addsrcrecordid>eNqFkE1Pg0AQQDdGE5vaq-f9A-As0AWODRVr0qoHTHojy37AGmDJLqTpv7e1Rr15mjm8N5k8hO4J-AQgeGCiG_0ASAKwJOQKzYKQLr0Y0v31n_0WLZz7AACSEhomwQztN7pucNFYM9XNMI34hfWm1YNxppM4N7ZjozY9fne6r3G4xm9W96MUeKe5NaqdtNAc5605nGA-fVFZowd3h24Ua51cfM85KvLHItt429en52y19XgYxcRTklIRJ5zJiC8jSAUwGkuWiDSWVLAkUEpWcRUS4JICcFapKAlElAKpOKXhHPmXs6dvnLNSlYPVHbPHkkB5LlOey5Q_ZU5CehEOupXHf-hytd4Vv-4nS31peA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High Throughput Nanoliposome Formation Using 3D Printed Microfluidic Flow Focusing Chips</title><source>Wiley Journals</source><creator>Chen, Zhu ; Han, Jung Yeon ; Shumate, Laura ; Fedak, Renee ; DeVoe, Don L.</creator><creatorcontrib>Chen, Zhu ; Han, Jung Yeon ; Shumate, Laura ; Fedak, Renee ; DeVoe, Don L.</creatorcontrib><description>The use of additive manufacturing to fabricate microfluidic devices capable of high throughout synthesis of nanoscale liposomes with tunable dimensions is demonstrated. Employing a high‐resolution 3D printing process based on stereolithography and digital light projection, microchannel geometries and printing parameters are optimized to enable reliable patterning of channel features with critical dimensions of 200 µm, supporting the production of lipid vesicles below 100 nm in diameter by microfluidic flow focusing. The additive manufacturing approach enables the fabrication of flow focusing microchannels with high aspect ratios, together with seamless fabrication of high‐pressure fluidic ports for world‐to‐chip interfacing, supporting large volumetric flow rates and high‐throughput nanoparticle synthesis, with demonstrated production rates for optimized liposomes as high as 4 mg min−1 from a single device. High‐resolution 3D printing is explored for the fabrication of microfluidic flow focusing devices supporting high throughput liposome production. By optimizing printing parameters and device design, integrated chips enabling the production of lipid vesicles below 100 nm in diameter are demonstrated, with liposome production rates up to 4 mg min−1 from a single device.</description><identifier>ISSN: 2365-709X</identifier><identifier>EISSN: 2365-709X</identifier><identifier>DOI: 10.1002/admt.201800511</identifier><language>eng</language><subject>nanomanufacturing ; nanomedicine ; vesicles</subject><ispartof>Advanced materials technologies, 2019-06, Vol.4 (6), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3471-fe66d78cae4c5409d0a67ea8d97e6da82ffeb7b310ce600cabf482d4901bc663</citedby><cites>FETCH-LOGICAL-c3471-fe66d78cae4c5409d0a67ea8d97e6da82ffeb7b310ce600cabf482d4901bc663</cites><orcidid>0000-0002-7740-9993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmt.201800511$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmt.201800511$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Chen, Zhu</creatorcontrib><creatorcontrib>Han, Jung Yeon</creatorcontrib><creatorcontrib>Shumate, Laura</creatorcontrib><creatorcontrib>Fedak, Renee</creatorcontrib><creatorcontrib>DeVoe, Don L.</creatorcontrib><title>High Throughput Nanoliposome Formation Using 3D Printed Microfluidic Flow Focusing Chips</title><title>Advanced materials technologies</title><description>The use of additive manufacturing to fabricate microfluidic devices capable of high throughout synthesis of nanoscale liposomes with tunable dimensions is demonstrated. Employing a high‐resolution 3D printing process based on stereolithography and digital light projection, microchannel geometries and printing parameters are optimized to enable reliable patterning of channel features with critical dimensions of 200 µm, supporting the production of lipid vesicles below 100 nm in diameter by microfluidic flow focusing. The additive manufacturing approach enables the fabrication of flow focusing microchannels with high aspect ratios, together with seamless fabrication of high‐pressure fluidic ports for world‐to‐chip interfacing, supporting large volumetric flow rates and high‐throughput nanoparticle synthesis, with demonstrated production rates for optimized liposomes as high as 4 mg min−1 from a single device. High‐resolution 3D printing is explored for the fabrication of microfluidic flow focusing devices supporting high throughput liposome production. By optimizing printing parameters and device design, integrated chips enabling the production of lipid vesicles below 100 nm in diameter are demonstrated, with liposome production rates up to 4 mg min−1 from a single device.</description><subject>nanomanufacturing</subject><subject>nanomedicine</subject><subject>vesicles</subject><issn>2365-709X</issn><issn>2365-709X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Pg0AQQDdGE5vaq-f9A-As0AWODRVr0qoHTHojy37AGmDJLqTpv7e1Rr15mjm8N5k8hO4J-AQgeGCiG_0ASAKwJOQKzYKQLr0Y0v31n_0WLZz7AACSEhomwQztN7pucNFYM9XNMI34hfWm1YNxppM4N7ZjozY9fne6r3G4xm9W96MUeKe5NaqdtNAc5605nGA-fVFZowd3h24Ua51cfM85KvLHItt429en52y19XgYxcRTklIRJ5zJiC8jSAUwGkuWiDSWVLAkUEpWcRUS4JICcFapKAlElAKpOKXhHPmXs6dvnLNSlYPVHbPHkkB5LlOey5Q_ZU5CehEOupXHf-hytd4Vv-4nS31peA</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Chen, Zhu</creator><creator>Han, Jung Yeon</creator><creator>Shumate, Laura</creator><creator>Fedak, Renee</creator><creator>DeVoe, Don L.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7740-9993</orcidid></search><sort><creationdate>201906</creationdate><title>High Throughput Nanoliposome Formation Using 3D Printed Microfluidic Flow Focusing Chips</title><author>Chen, Zhu ; Han, Jung Yeon ; Shumate, Laura ; Fedak, Renee ; DeVoe, Don L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3471-fe66d78cae4c5409d0a67ea8d97e6da82ffeb7b310ce600cabf482d4901bc663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>nanomanufacturing</topic><topic>nanomedicine</topic><topic>vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhu</creatorcontrib><creatorcontrib>Han, Jung Yeon</creatorcontrib><creatorcontrib>Shumate, Laura</creatorcontrib><creatorcontrib>Fedak, Renee</creatorcontrib><creatorcontrib>DeVoe, Don L.</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced materials technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhu</au><au>Han, Jung Yeon</au><au>Shumate, Laura</au><au>Fedak, Renee</au><au>DeVoe, Don L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Throughput Nanoliposome Formation Using 3D Printed Microfluidic Flow Focusing Chips</atitle><jtitle>Advanced materials technologies</jtitle><date>2019-06</date><risdate>2019</risdate><volume>4</volume><issue>6</issue><epage>n/a</epage><issn>2365-709X</issn><eissn>2365-709X</eissn><abstract>The use of additive manufacturing to fabricate microfluidic devices capable of high throughout synthesis of nanoscale liposomes with tunable dimensions is demonstrated. Employing a high‐resolution 3D printing process based on stereolithography and digital light projection, microchannel geometries and printing parameters are optimized to enable reliable patterning of channel features with critical dimensions of 200 µm, supporting the production of lipid vesicles below 100 nm in diameter by microfluidic flow focusing. The additive manufacturing approach enables the fabrication of flow focusing microchannels with high aspect ratios, together with seamless fabrication of high‐pressure fluidic ports for world‐to‐chip interfacing, supporting large volumetric flow rates and high‐throughput nanoparticle synthesis, with demonstrated production rates for optimized liposomes as high as 4 mg min−1 from a single device. High‐resolution 3D printing is explored for the fabrication of microfluidic flow focusing devices supporting high throughput liposome production. By optimizing printing parameters and device design, integrated chips enabling the production of lipid vesicles below 100 nm in diameter are demonstrated, with liposome production rates up to 4 mg min−1 from a single device.</abstract><doi>10.1002/admt.201800511</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7740-9993</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2365-709X
ispartof Advanced materials technologies, 2019-06, Vol.4 (6), p.n/a
issn 2365-709X
2365-709X
language eng
recordid cdi_crossref_primary_10_1002_admt_201800511
source Wiley Journals
subjects nanomanufacturing
nanomedicine
vesicles
title High Throughput Nanoliposome Formation Using 3D Printed Microfluidic Flow Focusing Chips
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A33%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Throughput%20Nanoliposome%20Formation%20Using%203D%20Printed%20Microfluidic%20Flow%20Focusing%20Chips&rft.jtitle=Advanced%20materials%20technologies&rft.au=Chen,%20Zhu&rft.date=2019-06&rft.volume=4&rft.issue=6&rft.epage=n/a&rft.issn=2365-709X&rft.eissn=2365-709X&rft_id=info:doi/10.1002/admt.201800511&rft_dat=%3Cwiley_cross%3EADMT201800511%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true