Moiré Engineering of Spin-Orbit Torque by Twisted WS 2 Homobilayers
Artificial moiré superlattices created by stacking two-dimensional crystals have emerged as a powerful platform with unprecedented material-engineering capabilities. While moiré superlattices have been reported to host a number of novel quantum states, their potential for spintronic applications rem...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-07, Vol.36 (30), p.e2313059 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 30 |
container_start_page | e2313059 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Liansg, Xiaorong Lv, Penghao Xiong, Yunhai Chen, Xi Fu, Di Feng, Yiping Wang, Xusheng Chen, Xiang Xu, Guizhou Kan, Erjun Xu, Feng Zeng, Haibo |
description | Artificial moiré superlattices created by stacking two-dimensional crystals have emerged as a powerful platform with unprecedented material-engineering capabilities. While moiré superlattices have been reported to host a number of novel quantum states, their potential for spintronic applications remains largely unexplored. Here, we demonstrated the effective manipulation of spin-orbit torque (SOT) using moiré superlattices in ferromagnetic devices comprised of twisted WS
/WS
homobilayer (t-WS
) and CoFe/Pt thin films by altering twisting angle (θ) and gate voltage. Notably, we observed a substantial enhancement of up to 44.5% in SOT conductivity at θ approximately 8.3°. Furthermore, compared to the WS
monolayer and untwisted WS
/WS
bilayers, the moiré superlattices in t-WS
enable a greater gate-voltage tunability of SOT conductivity. We related these results to the generation of interfacial moiré magnetic field by real-space Berry phase in moiré superlattices, which modulates the absorption of the spin-Hall current arising from Pt through magnetic proximity effect. This study highlights the moiré physics as a new building block for designing enhanced spintronic devices. This article is protected by copyright. All rights reserved. |
doi_str_mv | 10.1002/adma.202313059 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adma_202313059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38871341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1071-6d3bc5c2974035e44a3b7e5c1f1adb4b9f41eff4ecfc256363bc66ffd1e17dbe3</originalsourceid><addsrcrecordid>eNo9kMtOAjEYhRujEUS3Lk1fYLB_b0OXBlFMMCzAuJz0SmqYGWwhZh7J5_DFhKCszuY7JzkfQrdAhkAIvdeu1kNKKANGhDpDfRAUCk6UOEd9opgolOSjHrrK-YMQoiSRl6jHRqMSGIc-enxtY_r5xpNmFRvvU2xWuA14sYlNMU8mbvGyTZ87j02Hl18xb73D7wtM8bStWxPXuvMpX6OLoNfZ3_zlAL09TZbjaTGbP7-MH2aFBVJCIR0zVliqSk6Y8JxrZkovLATQznCjAgcfAvc2WCokk3tcyhAceCid8WyAhsddm9qckw_VJsVap64CUh10VAcd1UnHvnB3LGx2pvbuhP__Z789Xlwn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Moiré Engineering of Spin-Orbit Torque by Twisted WS 2 Homobilayers</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Liansg, Xiaorong ; Lv, Penghao ; Xiong, Yunhai ; Chen, Xi ; Fu, Di ; Feng, Yiping ; Wang, Xusheng ; Chen, Xiang ; Xu, Guizhou ; Kan, Erjun ; Xu, Feng ; Zeng, Haibo</creator><creatorcontrib>Liansg, Xiaorong ; Lv, Penghao ; Xiong, Yunhai ; Chen, Xi ; Fu, Di ; Feng, Yiping ; Wang, Xusheng ; Chen, Xiang ; Xu, Guizhou ; Kan, Erjun ; Xu, Feng ; Zeng, Haibo</creatorcontrib><description>Artificial moiré superlattices created by stacking two-dimensional crystals have emerged as a powerful platform with unprecedented material-engineering capabilities. While moiré superlattices have been reported to host a number of novel quantum states, their potential for spintronic applications remains largely unexplored. Here, we demonstrated the effective manipulation of spin-orbit torque (SOT) using moiré superlattices in ferromagnetic devices comprised of twisted WS
/WS
homobilayer (t-WS
) and CoFe/Pt thin films by altering twisting angle (θ) and gate voltage. Notably, we observed a substantial enhancement of up to 44.5% in SOT conductivity at θ approximately 8.3°. Furthermore, compared to the WS
monolayer and untwisted WS
/WS
bilayers, the moiré superlattices in t-WS
enable a greater gate-voltage tunability of SOT conductivity. We related these results to the generation of interfacial moiré magnetic field by real-space Berry phase in moiré superlattices, which modulates the absorption of the spin-Hall current arising from Pt through magnetic proximity effect. This study highlights the moiré physics as a new building block for designing enhanced spintronic devices. This article is protected by copyright. All rights reserved.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202313059</identifier><identifier>PMID: 38871341</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Advanced materials (Weinheim), 2024-07, Vol.36 (30), p.e2313059</ispartof><rights>This article is protected by copyright. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1071-6d3bc5c2974035e44a3b7e5c1f1adb4b9f41eff4ecfc256363bc66ffd1e17dbe3</citedby><cites>FETCH-LOGICAL-c1071-6d3bc5c2974035e44a3b7e5c1f1adb4b9f41eff4ecfc256363bc66ffd1e17dbe3</cites><orcidid>0000-0002-0281-3617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38871341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liansg, Xiaorong</creatorcontrib><creatorcontrib>Lv, Penghao</creatorcontrib><creatorcontrib>Xiong, Yunhai</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Fu, Di</creatorcontrib><creatorcontrib>Feng, Yiping</creatorcontrib><creatorcontrib>Wang, Xusheng</creatorcontrib><creatorcontrib>Chen, Xiang</creatorcontrib><creatorcontrib>Xu, Guizhou</creatorcontrib><creatorcontrib>Kan, Erjun</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Zeng, Haibo</creatorcontrib><title>Moiré Engineering of Spin-Orbit Torque by Twisted WS 2 Homobilayers</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Artificial moiré superlattices created by stacking two-dimensional crystals have emerged as a powerful platform with unprecedented material-engineering capabilities. While moiré superlattices have been reported to host a number of novel quantum states, their potential for spintronic applications remains largely unexplored. Here, we demonstrated the effective manipulation of spin-orbit torque (SOT) using moiré superlattices in ferromagnetic devices comprised of twisted WS
/WS
homobilayer (t-WS
) and CoFe/Pt thin films by altering twisting angle (θ) and gate voltage. Notably, we observed a substantial enhancement of up to 44.5% in SOT conductivity at θ approximately 8.3°. Furthermore, compared to the WS
monolayer and untwisted WS
/WS
bilayers, the moiré superlattices in t-WS
enable a greater gate-voltage tunability of SOT conductivity. We related these results to the generation of interfacial moiré magnetic field by real-space Berry phase in moiré superlattices, which modulates the absorption of the spin-Hall current arising from Pt through magnetic proximity effect. This study highlights the moiré physics as a new building block for designing enhanced spintronic devices. This article is protected by copyright. All rights reserved.</description><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOAjEYhRujEUS3Lk1fYLB_b0OXBlFMMCzAuJz0SmqYGWwhZh7J5_DFhKCszuY7JzkfQrdAhkAIvdeu1kNKKANGhDpDfRAUCk6UOEd9opgolOSjHrrK-YMQoiSRl6jHRqMSGIc-enxtY_r5xpNmFRvvU2xWuA14sYlNMU8mbvGyTZ87j02Hl18xb73D7wtM8bStWxPXuvMpX6OLoNfZ3_zlAL09TZbjaTGbP7-MH2aFBVJCIR0zVliqSk6Y8JxrZkovLATQznCjAgcfAvc2WCokk3tcyhAceCid8WyAhsddm9qckw_VJsVap64CUh10VAcd1UnHvnB3LGx2pvbuhP__Z789Xlwn</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Liansg, Xiaorong</creator><creator>Lv, Penghao</creator><creator>Xiong, Yunhai</creator><creator>Chen, Xi</creator><creator>Fu, Di</creator><creator>Feng, Yiping</creator><creator>Wang, Xusheng</creator><creator>Chen, Xiang</creator><creator>Xu, Guizhou</creator><creator>Kan, Erjun</creator><creator>Xu, Feng</creator><creator>Zeng, Haibo</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0281-3617</orcidid></search><sort><creationdate>202407</creationdate><title>Moiré Engineering of Spin-Orbit Torque by Twisted WS 2 Homobilayers</title><author>Liansg, Xiaorong ; Lv, Penghao ; Xiong, Yunhai ; Chen, Xi ; Fu, Di ; Feng, Yiping ; Wang, Xusheng ; Chen, Xiang ; Xu, Guizhou ; Kan, Erjun ; Xu, Feng ; Zeng, Haibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1071-6d3bc5c2974035e44a3b7e5c1f1adb4b9f41eff4ecfc256363bc66ffd1e17dbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liansg, Xiaorong</creatorcontrib><creatorcontrib>Lv, Penghao</creatorcontrib><creatorcontrib>Xiong, Yunhai</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Fu, Di</creatorcontrib><creatorcontrib>Feng, Yiping</creatorcontrib><creatorcontrib>Wang, Xusheng</creatorcontrib><creatorcontrib>Chen, Xiang</creatorcontrib><creatorcontrib>Xu, Guizhou</creatorcontrib><creatorcontrib>Kan, Erjun</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Zeng, Haibo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liansg, Xiaorong</au><au>Lv, Penghao</au><au>Xiong, Yunhai</au><au>Chen, Xi</au><au>Fu, Di</au><au>Feng, Yiping</au><au>Wang, Xusheng</au><au>Chen, Xiang</au><au>Xu, Guizhou</au><au>Kan, Erjun</au><au>Xu, Feng</au><au>Zeng, Haibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moiré Engineering of Spin-Orbit Torque by Twisted WS 2 Homobilayers</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-07</date><risdate>2024</risdate><volume>36</volume><issue>30</issue><spage>e2313059</spage><pages>e2313059-</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Artificial moiré superlattices created by stacking two-dimensional crystals have emerged as a powerful platform with unprecedented material-engineering capabilities. While moiré superlattices have been reported to host a number of novel quantum states, their potential for spintronic applications remains largely unexplored. Here, we demonstrated the effective manipulation of spin-orbit torque (SOT) using moiré superlattices in ferromagnetic devices comprised of twisted WS
/WS
homobilayer (t-WS
) and CoFe/Pt thin films by altering twisting angle (θ) and gate voltage. Notably, we observed a substantial enhancement of up to 44.5% in SOT conductivity at θ approximately 8.3°. Furthermore, compared to the WS
monolayer and untwisted WS
/WS
bilayers, the moiré superlattices in t-WS
enable a greater gate-voltage tunability of SOT conductivity. We related these results to the generation of interfacial moiré magnetic field by real-space Berry phase in moiré superlattices, which modulates the absorption of the spin-Hall current arising from Pt through magnetic proximity effect. This study highlights the moiré physics as a new building block for designing enhanced spintronic devices. This article is protected by copyright. All rights reserved.</abstract><cop>Germany</cop><pmid>38871341</pmid><doi>10.1002/adma.202313059</doi><orcidid>https://orcid.org/0000-0002-0281-3617</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-07, Vol.36 (30), p.e2313059 |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_crossref_primary_10_1002_adma_202313059 |
source | Wiley Online Library - AutoHoldings Journals |
title | Moiré Engineering of Spin-Orbit Torque by Twisted WS 2 Homobilayers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A50%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moir%C3%A9%20Engineering%20of%20Spin-Orbit%20Torque%20by%20Twisted%20WS%202%20Homobilayers&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liansg,%20Xiaorong&rft.date=2024-07&rft.volume=36&rft.issue=30&rft.spage=e2313059&rft.pages=e2313059-&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202313059&rft_dat=%3Cpubmed_cross%3E38871341%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38871341&rfr_iscdi=true |