Moiré Engineering of Spin-Orbit Torque by Twisted WS 2 Homobilayers

Artificial moiré superlattices created by stacking two-dimensional crystals have emerged as a powerful platform with unprecedented material-engineering capabilities. While moiré superlattices have been reported to host a number of novel quantum states, their potential for spintronic applications rem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-07, Vol.36 (30), p.e2313059
Hauptverfasser: Liansg, Xiaorong, Lv, Penghao, Xiong, Yunhai, Chen, Xi, Fu, Di, Feng, Yiping, Wang, Xusheng, Chen, Xiang, Xu, Guizhou, Kan, Erjun, Xu, Feng, Zeng, Haibo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 30
container_start_page e2313059
container_title Advanced materials (Weinheim)
container_volume 36
creator Liansg, Xiaorong
Lv, Penghao
Xiong, Yunhai
Chen, Xi
Fu, Di
Feng, Yiping
Wang, Xusheng
Chen, Xiang
Xu, Guizhou
Kan, Erjun
Xu, Feng
Zeng, Haibo
description Artificial moiré superlattices created by stacking two-dimensional crystals have emerged as a powerful platform with unprecedented material-engineering capabilities. While moiré superlattices have been reported to host a number of novel quantum states, their potential for spintronic applications remains largely unexplored. Here, we demonstrated the effective manipulation of spin-orbit torque (SOT) using moiré superlattices in ferromagnetic devices comprised of twisted WS /WS homobilayer (t-WS ) and CoFe/Pt thin films by altering twisting angle (θ) and gate voltage. Notably, we observed a substantial enhancement of up to 44.5% in SOT conductivity at θ approximately 8.3°. Furthermore, compared to the WS monolayer and untwisted WS /WS bilayers, the moiré superlattices in t-WS enable a greater gate-voltage tunability of SOT conductivity. We related these results to the generation of interfacial moiré magnetic field by real-space Berry phase in moiré superlattices, which modulates the absorption of the spin-Hall current arising from Pt through magnetic proximity effect. This study highlights the moiré physics as a new building block for designing enhanced spintronic devices. This article is protected by copyright. All rights reserved.
doi_str_mv 10.1002/adma.202313059
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adma_202313059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38871341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1071-6d3bc5c2974035e44a3b7e5c1f1adb4b9f41eff4ecfc256363bc66ffd1e17dbe3</originalsourceid><addsrcrecordid>eNo9kMtOAjEYhRujEUS3Lk1fYLB_b0OXBlFMMCzAuJz0SmqYGWwhZh7J5_DFhKCszuY7JzkfQrdAhkAIvdeu1kNKKANGhDpDfRAUCk6UOEd9opgolOSjHrrK-YMQoiSRl6jHRqMSGIc-enxtY_r5xpNmFRvvU2xWuA14sYlNMU8mbvGyTZ87j02Hl18xb73D7wtM8bStWxPXuvMpX6OLoNfZ3_zlAL09TZbjaTGbP7-MH2aFBVJCIR0zVliqSk6Y8JxrZkovLATQznCjAgcfAvc2WCokk3tcyhAceCid8WyAhsddm9qckw_VJsVap64CUh10VAcd1UnHvnB3LGx2pvbuhP__Z789Xlwn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Moiré Engineering of Spin-Orbit Torque by Twisted WS 2 Homobilayers</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Liansg, Xiaorong ; Lv, Penghao ; Xiong, Yunhai ; Chen, Xi ; Fu, Di ; Feng, Yiping ; Wang, Xusheng ; Chen, Xiang ; Xu, Guizhou ; Kan, Erjun ; Xu, Feng ; Zeng, Haibo</creator><creatorcontrib>Liansg, Xiaorong ; Lv, Penghao ; Xiong, Yunhai ; Chen, Xi ; Fu, Di ; Feng, Yiping ; Wang, Xusheng ; Chen, Xiang ; Xu, Guizhou ; Kan, Erjun ; Xu, Feng ; Zeng, Haibo</creatorcontrib><description>Artificial moiré superlattices created by stacking two-dimensional crystals have emerged as a powerful platform with unprecedented material-engineering capabilities. While moiré superlattices have been reported to host a number of novel quantum states, their potential for spintronic applications remains largely unexplored. Here, we demonstrated the effective manipulation of spin-orbit torque (SOT) using moiré superlattices in ferromagnetic devices comprised of twisted WS /WS homobilayer (t-WS ) and CoFe/Pt thin films by altering twisting angle (θ) and gate voltage. Notably, we observed a substantial enhancement of up to 44.5% in SOT conductivity at θ approximately 8.3°. Furthermore, compared to the WS monolayer and untwisted WS /WS bilayers, the moiré superlattices in t-WS enable a greater gate-voltage tunability of SOT conductivity. We related these results to the generation of interfacial moiré magnetic field by real-space Berry phase in moiré superlattices, which modulates the absorption of the spin-Hall current arising from Pt through magnetic proximity effect. This study highlights the moiré physics as a new building block for designing enhanced spintronic devices. This article is protected by copyright. All rights reserved.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202313059</identifier><identifier>PMID: 38871341</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Advanced materials (Weinheim), 2024-07, Vol.36 (30), p.e2313059</ispartof><rights>This article is protected by copyright. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1071-6d3bc5c2974035e44a3b7e5c1f1adb4b9f41eff4ecfc256363bc66ffd1e17dbe3</citedby><cites>FETCH-LOGICAL-c1071-6d3bc5c2974035e44a3b7e5c1f1adb4b9f41eff4ecfc256363bc66ffd1e17dbe3</cites><orcidid>0000-0002-0281-3617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38871341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liansg, Xiaorong</creatorcontrib><creatorcontrib>Lv, Penghao</creatorcontrib><creatorcontrib>Xiong, Yunhai</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Fu, Di</creatorcontrib><creatorcontrib>Feng, Yiping</creatorcontrib><creatorcontrib>Wang, Xusheng</creatorcontrib><creatorcontrib>Chen, Xiang</creatorcontrib><creatorcontrib>Xu, Guizhou</creatorcontrib><creatorcontrib>Kan, Erjun</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Zeng, Haibo</creatorcontrib><title>Moiré Engineering of Spin-Orbit Torque by Twisted WS 2 Homobilayers</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Artificial moiré superlattices created by stacking two-dimensional crystals have emerged as a powerful platform with unprecedented material-engineering capabilities. While moiré superlattices have been reported to host a number of novel quantum states, their potential for spintronic applications remains largely unexplored. Here, we demonstrated the effective manipulation of spin-orbit torque (SOT) using moiré superlattices in ferromagnetic devices comprised of twisted WS /WS homobilayer (t-WS ) and CoFe/Pt thin films by altering twisting angle (θ) and gate voltage. Notably, we observed a substantial enhancement of up to 44.5% in SOT conductivity at θ approximately 8.3°. Furthermore, compared to the WS monolayer and untwisted WS /WS bilayers, the moiré superlattices in t-WS enable a greater gate-voltage tunability of SOT conductivity. We related these results to the generation of interfacial moiré magnetic field by real-space Berry phase in moiré superlattices, which modulates the absorption of the spin-Hall current arising from Pt through magnetic proximity effect. This study highlights the moiré physics as a new building block for designing enhanced spintronic devices. This article is protected by copyright. All rights reserved.</description><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOAjEYhRujEUS3Lk1fYLB_b0OXBlFMMCzAuJz0SmqYGWwhZh7J5_DFhKCszuY7JzkfQrdAhkAIvdeu1kNKKANGhDpDfRAUCk6UOEd9opgolOSjHrrK-YMQoiSRl6jHRqMSGIc-enxtY_r5xpNmFRvvU2xWuA14sYlNMU8mbvGyTZ87j02Hl18xb73D7wtM8bStWxPXuvMpX6OLoNfZ3_zlAL09TZbjaTGbP7-MH2aFBVJCIR0zVliqSk6Y8JxrZkovLATQznCjAgcfAvc2WCokk3tcyhAceCid8WyAhsddm9qckw_VJsVap64CUh10VAcd1UnHvnB3LGx2pvbuhP__Z789Xlwn</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Liansg, Xiaorong</creator><creator>Lv, Penghao</creator><creator>Xiong, Yunhai</creator><creator>Chen, Xi</creator><creator>Fu, Di</creator><creator>Feng, Yiping</creator><creator>Wang, Xusheng</creator><creator>Chen, Xiang</creator><creator>Xu, Guizhou</creator><creator>Kan, Erjun</creator><creator>Xu, Feng</creator><creator>Zeng, Haibo</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0281-3617</orcidid></search><sort><creationdate>202407</creationdate><title>Moiré Engineering of Spin-Orbit Torque by Twisted WS 2 Homobilayers</title><author>Liansg, Xiaorong ; Lv, Penghao ; Xiong, Yunhai ; Chen, Xi ; Fu, Di ; Feng, Yiping ; Wang, Xusheng ; Chen, Xiang ; Xu, Guizhou ; Kan, Erjun ; Xu, Feng ; Zeng, Haibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1071-6d3bc5c2974035e44a3b7e5c1f1adb4b9f41eff4ecfc256363bc66ffd1e17dbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liansg, Xiaorong</creatorcontrib><creatorcontrib>Lv, Penghao</creatorcontrib><creatorcontrib>Xiong, Yunhai</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Fu, Di</creatorcontrib><creatorcontrib>Feng, Yiping</creatorcontrib><creatorcontrib>Wang, Xusheng</creatorcontrib><creatorcontrib>Chen, Xiang</creatorcontrib><creatorcontrib>Xu, Guizhou</creatorcontrib><creatorcontrib>Kan, Erjun</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Zeng, Haibo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liansg, Xiaorong</au><au>Lv, Penghao</au><au>Xiong, Yunhai</au><au>Chen, Xi</au><au>Fu, Di</au><au>Feng, Yiping</au><au>Wang, Xusheng</au><au>Chen, Xiang</au><au>Xu, Guizhou</au><au>Kan, Erjun</au><au>Xu, Feng</au><au>Zeng, Haibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moiré Engineering of Spin-Orbit Torque by Twisted WS 2 Homobilayers</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-07</date><risdate>2024</risdate><volume>36</volume><issue>30</issue><spage>e2313059</spage><pages>e2313059-</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Artificial moiré superlattices created by stacking two-dimensional crystals have emerged as a powerful platform with unprecedented material-engineering capabilities. While moiré superlattices have been reported to host a number of novel quantum states, their potential for spintronic applications remains largely unexplored. Here, we demonstrated the effective manipulation of spin-orbit torque (SOT) using moiré superlattices in ferromagnetic devices comprised of twisted WS /WS homobilayer (t-WS ) and CoFe/Pt thin films by altering twisting angle (θ) and gate voltage. Notably, we observed a substantial enhancement of up to 44.5% in SOT conductivity at θ approximately 8.3°. Furthermore, compared to the WS monolayer and untwisted WS /WS bilayers, the moiré superlattices in t-WS enable a greater gate-voltage tunability of SOT conductivity. We related these results to the generation of interfacial moiré magnetic field by real-space Berry phase in moiré superlattices, which modulates the absorption of the spin-Hall current arising from Pt through magnetic proximity effect. This study highlights the moiré physics as a new building block for designing enhanced spintronic devices. This article is protected by copyright. All rights reserved.</abstract><cop>Germany</cop><pmid>38871341</pmid><doi>10.1002/adma.202313059</doi><orcidid>https://orcid.org/0000-0002-0281-3617</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-07, Vol.36 (30), p.e2313059
issn 0935-9648
1521-4095
language eng
recordid cdi_crossref_primary_10_1002_adma_202313059
source Wiley Online Library - AutoHoldings Journals
title Moiré Engineering of Spin-Orbit Torque by Twisted WS 2 Homobilayers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A50%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moir%C3%A9%20Engineering%20of%20Spin-Orbit%20Torque%20by%20Twisted%20WS%202%20Homobilayers&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liansg,%20Xiaorong&rft.date=2024-07&rft.volume=36&rft.issue=30&rft.spage=e2313059&rft.pages=e2313059-&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202313059&rft_dat=%3Cpubmed_cross%3E38871341%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38871341&rfr_iscdi=true