Lattice Strain Engineering of Ni 2 p Enables Efficient Catalytic Hydrazine Oxidation-assisted Hydrogen Production

Hydrazine-assisted water electrolysis provides new opportunities to enable energy-saving hydrogen production while solve the issue of hydrazine pollution. Here, we report the synthesis of compressively strained Ni P as a bifunctional electrocatalyst for boosting both the anodic hydrazine oxidation r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-10, Vol.35 (42), p.e2305598
Hauptverfasser: Feng, Chao, Lyu, Miaoyuan, Shao, Jiaxin, Wu, Hanyang, Zhou, Weiliang, Qi, Shuai, Deng, Chen, Chai, Xiaoyan, Yang, Hengpan, Hu, Qi, He, Chuanxin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 42
container_start_page e2305598
container_title Advanced materials (Weinheim)
container_volume 35
creator Feng, Chao
Lyu, Miaoyuan
Shao, Jiaxin
Wu, Hanyang
Zhou, Weiliang
Qi, Shuai
Deng, Chen
Chai, Xiaoyan
Yang, Hengpan
Hu, Qi
He, Chuanxin
description Hydrazine-assisted water electrolysis provides new opportunities to enable energy-saving hydrogen production while solve the issue of hydrazine pollution. Here, we report the synthesis of compressively strained Ni P as a bifunctional electrocatalyst for boosting both the anodic hydrazine oxidation reaction (HzOR) and cathodic hydrogen evolution reaction (HER). Different from a multistep synthetic method that induces lattice strains by creating core-shell structures, we develop a facile strategy to tune strains of Ni P via the dual cation-codoping. The obtained Ni P with a compressive strain of -3.62% exhibits significantly enhanced activity for both the HzOR and HER than counterpart with tensile strains and without strains. Consequently, the optimized Ni P delivers current densities of 10 and 100 mA cm at small cell voltages of 0.16 and 0.39 V for hydrazine-assisted water electrolysis, respectively. Density functional theory (DFT) calculations reveal that the compression strain promotes water dissociation and concurrently tunes the adsorption strength of hydrogen intermediates, thereby facilitating the HER process on Ni P. As for the HzOR, the compression strain reduces the energy barrier of potential-determining step (PDS) for the dehydrogenation of *N H to *N H . Clearly, this work not only paves a facile pathway to synthesis lattice-strained electrocatalysts via the dual cations-codoping. This article is protected by copyright. All rights reserved.
doi_str_mv 10.1002/adma.202305598
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adma_202305598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37433070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1070-9eb0106680c19e7475323d47d4c8590877aaeb9b5583daa27ee5e40bccf79a073</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4Mobk5ffZR8gc5L0zTNo4zphOEE9blck-uIbO1MOnB--nVO93Rw___vOH6M3QoYC4D0Ht0axymkEpQyxRkbCpWKJAOjztkQjFSJybNiwK5i_AQAk0N-yQZSZ1KChiH7mmPXeUv8rQvoGz5tlr4hCr5Z8rbmL56nfNNvsVpR5NO69tZT0_EJdrja9SSf7VzAnx7ii2_vsPNtk2CMPnbkfsN2SQ1_Da3b2kN4zS5qXEW6-Zsj9vE4fZ_Mkvni6XnyME-s6D9LDFUgIM8LsMKQzrSSqXSZdpktlIFCa0SqTKVUIR1iqokUZVBZW2uDoOWIjY93bWhjDFSXm-DXGHalgPLgrjy4K0_ueuDuCGy21Zrcqf4vS-4BuYVrWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lattice Strain Engineering of Ni 2 p Enables Efficient Catalytic Hydrazine Oxidation-assisted Hydrogen Production</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Feng, Chao ; Lyu, Miaoyuan ; Shao, Jiaxin ; Wu, Hanyang ; Zhou, Weiliang ; Qi, Shuai ; Deng, Chen ; Chai, Xiaoyan ; Yang, Hengpan ; Hu, Qi ; He, Chuanxin</creator><creatorcontrib>Feng, Chao ; Lyu, Miaoyuan ; Shao, Jiaxin ; Wu, Hanyang ; Zhou, Weiliang ; Qi, Shuai ; Deng, Chen ; Chai, Xiaoyan ; Yang, Hengpan ; Hu, Qi ; He, Chuanxin</creatorcontrib><description>Hydrazine-assisted water electrolysis provides new opportunities to enable energy-saving hydrogen production while solve the issue of hydrazine pollution. Here, we report the synthesis of compressively strained Ni P as a bifunctional electrocatalyst for boosting both the anodic hydrazine oxidation reaction (HzOR) and cathodic hydrogen evolution reaction (HER). Different from a multistep synthetic method that induces lattice strains by creating core-shell structures, we develop a facile strategy to tune strains of Ni P via the dual cation-codoping. The obtained Ni P with a compressive strain of -3.62% exhibits significantly enhanced activity for both the HzOR and HER than counterpart with tensile strains and without strains. Consequently, the optimized Ni P delivers current densities of 10 and 100 mA cm at small cell voltages of 0.16 and 0.39 V for hydrazine-assisted water electrolysis, respectively. Density functional theory (DFT) calculations reveal that the compression strain promotes water dissociation and concurrently tunes the adsorption strength of hydrogen intermediates, thereby facilitating the HER process on Ni P. As for the HzOR, the compression strain reduces the energy barrier of potential-determining step (PDS) for the dehydrogenation of *N H to *N H . Clearly, this work not only paves a facile pathway to synthesis lattice-strained electrocatalysts via the dual cations-codoping. This article is protected by copyright. All rights reserved.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202305598</identifier><identifier>PMID: 37433070</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Advanced materials (Weinheim), 2023-10, Vol.35 (42), p.e2305598</ispartof><rights>This article is protected by copyright. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1070-9eb0106680c19e7475323d47d4c8590877aaeb9b5583daa27ee5e40bccf79a073</citedby><cites>FETCH-LOGICAL-c1070-9eb0106680c19e7475323d47d4c8590877aaeb9b5583daa27ee5e40bccf79a073</cites><orcidid>0000-0002-2254-360X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37433070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Chao</creatorcontrib><creatorcontrib>Lyu, Miaoyuan</creatorcontrib><creatorcontrib>Shao, Jiaxin</creatorcontrib><creatorcontrib>Wu, Hanyang</creatorcontrib><creatorcontrib>Zhou, Weiliang</creatorcontrib><creatorcontrib>Qi, Shuai</creatorcontrib><creatorcontrib>Deng, Chen</creatorcontrib><creatorcontrib>Chai, Xiaoyan</creatorcontrib><creatorcontrib>Yang, Hengpan</creatorcontrib><creatorcontrib>Hu, Qi</creatorcontrib><creatorcontrib>He, Chuanxin</creatorcontrib><title>Lattice Strain Engineering of Ni 2 p Enables Efficient Catalytic Hydrazine Oxidation-assisted Hydrogen Production</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Hydrazine-assisted water electrolysis provides new opportunities to enable energy-saving hydrogen production while solve the issue of hydrazine pollution. Here, we report the synthesis of compressively strained Ni P as a bifunctional electrocatalyst for boosting both the anodic hydrazine oxidation reaction (HzOR) and cathodic hydrogen evolution reaction (HER). Different from a multistep synthetic method that induces lattice strains by creating core-shell structures, we develop a facile strategy to tune strains of Ni P via the dual cation-codoping. The obtained Ni P with a compressive strain of -3.62% exhibits significantly enhanced activity for both the HzOR and HER than counterpart with tensile strains and without strains. Consequently, the optimized Ni P delivers current densities of 10 and 100 mA cm at small cell voltages of 0.16 and 0.39 V for hydrazine-assisted water electrolysis, respectively. Density functional theory (DFT) calculations reveal that the compression strain promotes water dissociation and concurrently tunes the adsorption strength of hydrogen intermediates, thereby facilitating the HER process on Ni P. As for the HzOR, the compression strain reduces the energy barrier of potential-determining step (PDS) for the dehydrogenation of *N H to *N H . Clearly, this work not only paves a facile pathway to synthesis lattice-strained electrocatalysts via the dual cations-codoping. This article is protected by copyright. All rights reserved.</description><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAQx4Mobk5ffZR8gc5L0zTNo4zphOEE9blck-uIbO1MOnB--nVO93Rw___vOH6M3QoYC4D0Ht0axymkEpQyxRkbCpWKJAOjztkQjFSJybNiwK5i_AQAk0N-yQZSZ1KChiH7mmPXeUv8rQvoGz5tlr4hCr5Z8rbmL56nfNNvsVpR5NO69tZT0_EJdrja9SSf7VzAnx7ii2_vsPNtk2CMPnbkfsN2SQ1_Da3b2kN4zS5qXEW6-Zsj9vE4fZ_Mkvni6XnyME-s6D9LDFUgIM8LsMKQzrSSqXSZdpktlIFCa0SqTKVUIR1iqokUZVBZW2uDoOWIjY93bWhjDFSXm-DXGHalgPLgrjy4K0_ueuDuCGy21Zrcqf4vS-4BuYVrWQ</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Feng, Chao</creator><creator>Lyu, Miaoyuan</creator><creator>Shao, Jiaxin</creator><creator>Wu, Hanyang</creator><creator>Zhou, Weiliang</creator><creator>Qi, Shuai</creator><creator>Deng, Chen</creator><creator>Chai, Xiaoyan</creator><creator>Yang, Hengpan</creator><creator>Hu, Qi</creator><creator>He, Chuanxin</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2254-360X</orcidid></search><sort><creationdate>202310</creationdate><title>Lattice Strain Engineering of Ni 2 p Enables Efficient Catalytic Hydrazine Oxidation-assisted Hydrogen Production</title><author>Feng, Chao ; Lyu, Miaoyuan ; Shao, Jiaxin ; Wu, Hanyang ; Zhou, Weiliang ; Qi, Shuai ; Deng, Chen ; Chai, Xiaoyan ; Yang, Hengpan ; Hu, Qi ; He, Chuanxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1070-9eb0106680c19e7475323d47d4c8590877aaeb9b5583daa27ee5e40bccf79a073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Chao</creatorcontrib><creatorcontrib>Lyu, Miaoyuan</creatorcontrib><creatorcontrib>Shao, Jiaxin</creatorcontrib><creatorcontrib>Wu, Hanyang</creatorcontrib><creatorcontrib>Zhou, Weiliang</creatorcontrib><creatorcontrib>Qi, Shuai</creatorcontrib><creatorcontrib>Deng, Chen</creatorcontrib><creatorcontrib>Chai, Xiaoyan</creatorcontrib><creatorcontrib>Yang, Hengpan</creatorcontrib><creatorcontrib>Hu, Qi</creatorcontrib><creatorcontrib>He, Chuanxin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Chao</au><au>Lyu, Miaoyuan</au><au>Shao, Jiaxin</au><au>Wu, Hanyang</au><au>Zhou, Weiliang</au><au>Qi, Shuai</au><au>Deng, Chen</au><au>Chai, Xiaoyan</au><au>Yang, Hengpan</au><au>Hu, Qi</au><au>He, Chuanxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Strain Engineering of Ni 2 p Enables Efficient Catalytic Hydrazine Oxidation-assisted Hydrogen Production</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-10</date><risdate>2023</risdate><volume>35</volume><issue>42</issue><spage>e2305598</spage><pages>e2305598-</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Hydrazine-assisted water electrolysis provides new opportunities to enable energy-saving hydrogen production while solve the issue of hydrazine pollution. Here, we report the synthesis of compressively strained Ni P as a bifunctional electrocatalyst for boosting both the anodic hydrazine oxidation reaction (HzOR) and cathodic hydrogen evolution reaction (HER). Different from a multistep synthetic method that induces lattice strains by creating core-shell structures, we develop a facile strategy to tune strains of Ni P via the dual cation-codoping. The obtained Ni P with a compressive strain of -3.62% exhibits significantly enhanced activity for both the HzOR and HER than counterpart with tensile strains and without strains. Consequently, the optimized Ni P delivers current densities of 10 and 100 mA cm at small cell voltages of 0.16 and 0.39 V for hydrazine-assisted water electrolysis, respectively. Density functional theory (DFT) calculations reveal that the compression strain promotes water dissociation and concurrently tunes the adsorption strength of hydrogen intermediates, thereby facilitating the HER process on Ni P. As for the HzOR, the compression strain reduces the energy barrier of potential-determining step (PDS) for the dehydrogenation of *N H to *N H . Clearly, this work not only paves a facile pathway to synthesis lattice-strained electrocatalysts via the dual cations-codoping. This article is protected by copyright. All rights reserved.</abstract><cop>Germany</cop><pmid>37433070</pmid><doi>10.1002/adma.202305598</doi><orcidid>https://orcid.org/0000-0002-2254-360X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-10, Vol.35 (42), p.e2305598
issn 0935-9648
1521-4095
language eng
recordid cdi_crossref_primary_10_1002_adma_202305598
source Wiley Online Library Journals Frontfile Complete
title Lattice Strain Engineering of Ni 2 p Enables Efficient Catalytic Hydrazine Oxidation-assisted Hydrogen Production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A41%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Strain%20Engineering%20of%20Ni%202%20p%20Enables%20Efficient%20Catalytic%20Hydrazine%20Oxidation-assisted%20Hydrogen%20Production&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Feng,%20Chao&rft.date=2023-10&rft.volume=35&rft.issue=42&rft.spage=e2305598&rft.pages=e2305598-&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202305598&rft_dat=%3Cpubmed_cross%3E37433070%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/37433070&rfr_iscdi=true