Revealing Co-N 4 @Co-NP Bridge-Enabled Fast Charge Transfer and Active Intracellular Methanogenesis in Bio-Electrochemical CO 2 -Conversion with Methanosarcina Barkeri

To significantly advance the bio-electrochemical CO -conversion rate and unfold the correlation between the abiotic electrode and the attached microorganisms, an atomic-nanoparticle bridge of Co-N @Co-NP crafted in metal-organic frameworks-derived nanosheets is integrated with a model methanogen of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-12, Vol.35 (52), p.e2304920
Hauptverfasser: Xia, Rongxin, Cheng, Jun, Chen, Zhuo, Zhang, Ze, Zhou, Xinyi, Zhou, Junhu, Zhang, Meng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 52
container_start_page e2304920
container_title Advanced materials (Weinheim)
container_volume 35
creator Xia, Rongxin
Cheng, Jun
Chen, Zhuo
Zhang, Ze
Zhou, Xinyi
Zhou, Junhu
Zhang, Meng
description To significantly advance the bio-electrochemical CO -conversion rate and unfold the correlation between the abiotic electrode and the attached microorganisms, an atomic-nanoparticle bridge of Co-N @Co-NP crafted in metal-organic frameworks-derived nanosheets is integrated with a model methanogen of Methanosarcina barkeri (M. barkeri). The direct bonding of N in Co-N and Fe in member protein of Cytochrome b (Cytb) activates a fast direct electron transfer path while the Co nanoparticles further strengthen this bonding via decreasing the energy gap between the p-band center of N and the d-band center of Fe. This multiorbital tuning operation of Co nanoparticles also enhances the coenzyme F420-mediated electron transfer by enabling the electron flow direct to the hydrogenation sites. Particularly, the increased surface electric field of the Co-N @Co-NP bridge-based nanosheet electrode facilitates the interfacial Na accumulation to expedite ATPase transport for powering intracellular CO conversion. Remarkably, the self-assembled M.barkeri-Co-N @Co-NP biohybrid achieves a high methane production rate of 3860 mmol m day , which greatly outperforms other reported biohybrid systems. This work demonstrates a comprehensive scrutinization of biotic-abiotic energy transfer, which may serve as a guiding principle for efficient bio-electrochemical system design.
doi_str_mv 10.1002/adma.202304920
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adma_202304920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37689983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1073-cd220613d86d8999ad9bb9b24373432f62d0ccb0e45d8cfc07f1f1322a9561583</originalsourceid><addsrcrecordid>eNo9kM1O3DAUha2KqgyULcvqvoCHazvJxDuYaPiRaKkqWEc39s2MacZBdhjUJ-prlhGF1dmc70jnE-JU4Vwh6jPyW5pr1AYLq_GTmKlSK1mgLQ_EDK0ppa2K-lAc5fyIiLbC6os4NIuqtrY2M_H3F--YhhDX0IzyBxRwvs-fsEzBr1muInUDe7ikPEGzobRmuE8Uc88JKHq4cFPYMdzEKZHjYXgeKMF3njYUxzVHziFDiLAMo1wN7KY0ug1vg6MBmjvQIJsx7jjlMEZ4CdPmnc2UXIgES0q_OYWv4nNPQ-aT_3ksHi5X9821vL27umkubqVTuDDSea2xUsbXlX99aMnbrrOdLszCFEb3lfboXIdclL52vcNFr3pltCZbVqqszbGYv-26NOacuG-fUthS-tMqbPfG273x9sP4K_DtDXh67rbsP-rvis0_yrh9Jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Revealing Co-N 4 @Co-NP Bridge-Enabled Fast Charge Transfer and Active Intracellular Methanogenesis in Bio-Electrochemical CO 2 -Conversion with Methanosarcina Barkeri</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xia, Rongxin ; Cheng, Jun ; Chen, Zhuo ; Zhang, Ze ; Zhou, Xinyi ; Zhou, Junhu ; Zhang, Meng</creator><creatorcontrib>Xia, Rongxin ; Cheng, Jun ; Chen, Zhuo ; Zhang, Ze ; Zhou, Xinyi ; Zhou, Junhu ; Zhang, Meng</creatorcontrib><description>To significantly advance the bio-electrochemical CO -conversion rate and unfold the correlation between the abiotic electrode and the attached microorganisms, an atomic-nanoparticle bridge of Co-N @Co-NP crafted in metal-organic frameworks-derived nanosheets is integrated with a model methanogen of Methanosarcina barkeri (M. barkeri). The direct bonding of N in Co-N and Fe in member protein of Cytochrome b (Cytb) activates a fast direct electron transfer path while the Co nanoparticles further strengthen this bonding via decreasing the energy gap between the p-band center of N and the d-band center of Fe. This multiorbital tuning operation of Co nanoparticles also enhances the coenzyme F420-mediated electron transfer by enabling the electron flow direct to the hydrogenation sites. Particularly, the increased surface electric field of the Co-N @Co-NP bridge-based nanosheet electrode facilitates the interfacial Na accumulation to expedite ATPase transport for powering intracellular CO conversion. Remarkably, the self-assembled M.barkeri-Co-N @Co-NP biohybrid achieves a high methane production rate of 3860 mmol m day , which greatly outperforms other reported biohybrid systems. This work demonstrates a comprehensive scrutinization of biotic-abiotic energy transfer, which may serve as a guiding principle for efficient bio-electrochemical system design.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202304920</identifier><identifier>PMID: 37689983</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Advanced materials (Weinheim), 2023-12, Vol.35 (52), p.e2304920</ispartof><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1073-cd220613d86d8999ad9bb9b24373432f62d0ccb0e45d8cfc07f1f1322a9561583</citedby><cites>FETCH-LOGICAL-c1073-cd220613d86d8999ad9bb9b24373432f62d0ccb0e45d8cfc07f1f1322a9561583</cites><orcidid>0000-0002-5657-923X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37689983$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, Rongxin</creatorcontrib><creatorcontrib>Cheng, Jun</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><creatorcontrib>Zhang, Ze</creatorcontrib><creatorcontrib>Zhou, Xinyi</creatorcontrib><creatorcontrib>Zhou, Junhu</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><title>Revealing Co-N 4 @Co-NP Bridge-Enabled Fast Charge Transfer and Active Intracellular Methanogenesis in Bio-Electrochemical CO 2 -Conversion with Methanosarcina Barkeri</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>To significantly advance the bio-electrochemical CO -conversion rate and unfold the correlation between the abiotic electrode and the attached microorganisms, an atomic-nanoparticle bridge of Co-N @Co-NP crafted in metal-organic frameworks-derived nanosheets is integrated with a model methanogen of Methanosarcina barkeri (M. barkeri). The direct bonding of N in Co-N and Fe in member protein of Cytochrome b (Cytb) activates a fast direct electron transfer path while the Co nanoparticles further strengthen this bonding via decreasing the energy gap between the p-band center of N and the d-band center of Fe. This multiorbital tuning operation of Co nanoparticles also enhances the coenzyme F420-mediated electron transfer by enabling the electron flow direct to the hydrogenation sites. Particularly, the increased surface electric field of the Co-N @Co-NP bridge-based nanosheet electrode facilitates the interfacial Na accumulation to expedite ATPase transport for powering intracellular CO conversion. Remarkably, the self-assembled M.barkeri-Co-N @Co-NP biohybrid achieves a high methane production rate of 3860 mmol m day , which greatly outperforms other reported biohybrid systems. This work demonstrates a comprehensive scrutinization of biotic-abiotic energy transfer, which may serve as a guiding principle for efficient bio-electrochemical system design.</description><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1O3DAUha2KqgyULcvqvoCHazvJxDuYaPiRaKkqWEc39s2MacZBdhjUJ-prlhGF1dmc70jnE-JU4Vwh6jPyW5pr1AYLq_GTmKlSK1mgLQ_EDK0ppa2K-lAc5fyIiLbC6os4NIuqtrY2M_H3F--YhhDX0IzyBxRwvs-fsEzBr1muInUDe7ikPEGzobRmuE8Uc88JKHq4cFPYMdzEKZHjYXgeKMF3njYUxzVHziFDiLAMo1wN7KY0ug1vg6MBmjvQIJsx7jjlMEZ4CdPmnc2UXIgES0q_OYWv4nNPQ-aT_3ksHi5X9821vL27umkubqVTuDDSea2xUsbXlX99aMnbrrOdLszCFEb3lfboXIdclL52vcNFr3pltCZbVqqszbGYv-26NOacuG-fUthS-tMqbPfG273x9sP4K_DtDXh67rbsP-rvis0_yrh9Jg</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Xia, Rongxin</creator><creator>Cheng, Jun</creator><creator>Chen, Zhuo</creator><creator>Zhang, Ze</creator><creator>Zhou, Xinyi</creator><creator>Zhou, Junhu</creator><creator>Zhang, Meng</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5657-923X</orcidid></search><sort><creationdate>202312</creationdate><title>Revealing Co-N 4 @Co-NP Bridge-Enabled Fast Charge Transfer and Active Intracellular Methanogenesis in Bio-Electrochemical CO 2 -Conversion with Methanosarcina Barkeri</title><author>Xia, Rongxin ; Cheng, Jun ; Chen, Zhuo ; Zhang, Ze ; Zhou, Xinyi ; Zhou, Junhu ; Zhang, Meng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1073-cd220613d86d8999ad9bb9b24373432f62d0ccb0e45d8cfc07f1f1322a9561583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Rongxin</creatorcontrib><creatorcontrib>Cheng, Jun</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><creatorcontrib>Zhang, Ze</creatorcontrib><creatorcontrib>Zhou, Xinyi</creatorcontrib><creatorcontrib>Zhou, Junhu</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Rongxin</au><au>Cheng, Jun</au><au>Chen, Zhuo</au><au>Zhang, Ze</au><au>Zhou, Xinyi</au><au>Zhou, Junhu</au><au>Zhang, Meng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing Co-N 4 @Co-NP Bridge-Enabled Fast Charge Transfer and Active Intracellular Methanogenesis in Bio-Electrochemical CO 2 -Conversion with Methanosarcina Barkeri</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-12</date><risdate>2023</risdate><volume>35</volume><issue>52</issue><spage>e2304920</spage><pages>e2304920-</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>To significantly advance the bio-electrochemical CO -conversion rate and unfold the correlation between the abiotic electrode and the attached microorganisms, an atomic-nanoparticle bridge of Co-N @Co-NP crafted in metal-organic frameworks-derived nanosheets is integrated with a model methanogen of Methanosarcina barkeri (M. barkeri). The direct bonding of N in Co-N and Fe in member protein of Cytochrome b (Cytb) activates a fast direct electron transfer path while the Co nanoparticles further strengthen this bonding via decreasing the energy gap between the p-band center of N and the d-band center of Fe. This multiorbital tuning operation of Co nanoparticles also enhances the coenzyme F420-mediated electron transfer by enabling the electron flow direct to the hydrogenation sites. Particularly, the increased surface electric field of the Co-N @Co-NP bridge-based nanosheet electrode facilitates the interfacial Na accumulation to expedite ATPase transport for powering intracellular CO conversion. Remarkably, the self-assembled M.barkeri-Co-N @Co-NP biohybrid achieves a high methane production rate of 3860 mmol m day , which greatly outperforms other reported biohybrid systems. This work demonstrates a comprehensive scrutinization of biotic-abiotic energy transfer, which may serve as a guiding principle for efficient bio-electrochemical system design.</abstract><cop>Germany</cop><pmid>37689983</pmid><doi>10.1002/adma.202304920</doi><orcidid>https://orcid.org/0000-0002-5657-923X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-12, Vol.35 (52), p.e2304920
issn 0935-9648
1521-4095
language eng
recordid cdi_crossref_primary_10_1002_adma_202304920
source Wiley Online Library Journals Frontfile Complete
title Revealing Co-N 4 @Co-NP Bridge-Enabled Fast Charge Transfer and Active Intracellular Methanogenesis in Bio-Electrochemical CO 2 -Conversion with Methanosarcina Barkeri
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20Co-N%204%20@Co-NP%20Bridge-Enabled%20Fast%20Charge%20Transfer%20and%20Active%20Intracellular%20Methanogenesis%20in%20Bio-Electrochemical%20CO%202%20-Conversion%20with%20Methanosarcina%20Barkeri&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Xia,%20Rongxin&rft.date=2023-12&rft.volume=35&rft.issue=52&rft.spage=e2304920&rft.pages=e2304920-&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202304920&rft_dat=%3Cpubmed_cross%3E37689983%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/37689983&rfr_iscdi=true