Large-Scale Hf 0.5 Zr 0.5 O 2 Membranes with Robust Ferroelectricity
Hafnia-based compounds have considerable potential for use in nanoelectronics due to their compatibility with complementary metal-oxide-semiconductor devices and robust ferroelectricity at nanoscale sizes. However, the unexpected ferroelectricity in this class of compounds often remains elusive due...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2022-06, Vol.34 (24), p.e2109889 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | e2109889 |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Zhong, Hai Li, Mingqiang Zhang, Qinghua Yang, Lihong He, Ri Liu, Fang Liu, Zhuohui Li, Ge Sun, Qinchao Xie, Donggang Meng, Fanqi Li, Qiang He, Meng Guo, Er-Jia Wang, Can Zhong, Zhicheng Wang, Xinqiang Gu, Lin Yang, Guozhen Jin, Kuijuan Gao, Peng Ge, Chen |
description | Hafnia-based compounds have considerable potential for use in nanoelectronics due to their compatibility with complementary metal-oxide-semiconductor devices and robust ferroelectricity at nanoscale sizes. However, the unexpected ferroelectricity in this class of compounds often remains elusive due to the polymorphic nature of hafnia, as well as the lack of suitable methods for the characterization of the mixed/complex phases in hafnia thin films. Herein, the preparation of centimeter-scale, crack-free, freestanding Hf
Zr
O
(HZO) nanomembranes that are well suited for investigating the local crystallographic phases, orientations, and grain boundaries at both the microscopic and mesoscopic scales is reported. Atomic-level imaging of the plan-view crystallographic patterns shows that more than 80% of the grains are the ferroelectric orthorhombic phase, and that the mean equivalent diameter of these grains is about 12.1 nm, with values ranging from 4 to 50 nm. Moreover, the ferroelectric orthorhombic phase is stable in substrate-free HZO membranes, indicating that strain from the substrate is not responsible for maintaining the polar phase. It is also demonstrated that HZO capacitors prepared on flexible substrates are highly uniform, stable, and robust. These freestanding membranes provide a viable platform for the exploration of HZO polymorphic films with complex structures and pave the way to flexible nanoelectronics. |
doi_str_mv | 10.1002/adma.202109889 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adma_202109889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35397192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1072-a9d1ad747f9daca71c2269ac9628a0e829c9fb724327102610910c42c0f4d9983</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRbKxuXcr8gcQ7N4_JXUq1VogUfGzchJvJRCOJKTMp0n9va7Wrb3POgfMJcakgUgB4zXXPEQIqoDynIxGoFFWYAKXHIgCK05CyJJ-IM-8_AYAyyE7FJE5j0oowELcFu3cbPhvurFw0EqJUvrlfLCXKR9tXjr-sl9_t-CGfhmrtRzm3zg22s2Z0rWnHzbk4abjz9uKPU_E6v3uZLcJief8wuylCo0BjyFQrrnWiG6rZsFYGMSM2lGHOYHMkQ02lMYlRK8Bs-0mBSdBAk9REeTwV0X7XuMF7Z5ty5dqe3aZUUO50lDsd5UHHtnC1L6zWVW_rQ_z_f_wDUOxYFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Large-Scale Hf 0.5 Zr 0.5 O 2 Membranes with Robust Ferroelectricity</title><source>Wiley Online Library All Journals</source><creator>Zhong, Hai ; Li, Mingqiang ; Zhang, Qinghua ; Yang, Lihong ; He, Ri ; Liu, Fang ; Liu, Zhuohui ; Li, Ge ; Sun, Qinchao ; Xie, Donggang ; Meng, Fanqi ; Li, Qiang ; He, Meng ; Guo, Er-Jia ; Wang, Can ; Zhong, Zhicheng ; Wang, Xinqiang ; Gu, Lin ; Yang, Guozhen ; Jin, Kuijuan ; Gao, Peng ; Ge, Chen</creator><creatorcontrib>Zhong, Hai ; Li, Mingqiang ; Zhang, Qinghua ; Yang, Lihong ; He, Ri ; Liu, Fang ; Liu, Zhuohui ; Li, Ge ; Sun, Qinchao ; Xie, Donggang ; Meng, Fanqi ; Li, Qiang ; He, Meng ; Guo, Er-Jia ; Wang, Can ; Zhong, Zhicheng ; Wang, Xinqiang ; Gu, Lin ; Yang, Guozhen ; Jin, Kuijuan ; Gao, Peng ; Ge, Chen</creatorcontrib><description>Hafnia-based compounds have considerable potential for use in nanoelectronics due to their compatibility with complementary metal-oxide-semiconductor devices and robust ferroelectricity at nanoscale sizes. However, the unexpected ferroelectricity in this class of compounds often remains elusive due to the polymorphic nature of hafnia, as well as the lack of suitable methods for the characterization of the mixed/complex phases in hafnia thin films. Herein, the preparation of centimeter-scale, crack-free, freestanding Hf
Zr
O
(HZO) nanomembranes that are well suited for investigating the local crystallographic phases, orientations, and grain boundaries at both the microscopic and mesoscopic scales is reported. Atomic-level imaging of the plan-view crystallographic patterns shows that more than 80% of the grains are the ferroelectric orthorhombic phase, and that the mean equivalent diameter of these grains is about 12.1 nm, with values ranging from 4 to 50 nm. Moreover, the ferroelectric orthorhombic phase is stable in substrate-free HZO membranes, indicating that strain from the substrate is not responsible for maintaining the polar phase. It is also demonstrated that HZO capacitors prepared on flexible substrates are highly uniform, stable, and robust. These freestanding membranes provide a viable platform for the exploration of HZO polymorphic films with complex structures and pave the way to flexible nanoelectronics.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202109889</identifier><identifier>PMID: 35397192</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Advanced materials (Weinheim), 2022-06, Vol.34 (24), p.e2109889</ispartof><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1072-a9d1ad747f9daca71c2269ac9628a0e829c9fb724327102610910c42c0f4d9983</citedby><cites>FETCH-LOGICAL-c1072-a9d1ad747f9daca71c2269ac9628a0e829c9fb724327102610910c42c0f4d9983</cites><orcidid>0000-0002-8093-940X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35397192$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhong, Hai</creatorcontrib><creatorcontrib>Li, Mingqiang</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Yang, Lihong</creatorcontrib><creatorcontrib>He, Ri</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Liu, Zhuohui</creatorcontrib><creatorcontrib>Li, Ge</creatorcontrib><creatorcontrib>Sun, Qinchao</creatorcontrib><creatorcontrib>Xie, Donggang</creatorcontrib><creatorcontrib>Meng, Fanqi</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>He, Meng</creatorcontrib><creatorcontrib>Guo, Er-Jia</creatorcontrib><creatorcontrib>Wang, Can</creatorcontrib><creatorcontrib>Zhong, Zhicheng</creatorcontrib><creatorcontrib>Wang, Xinqiang</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Yang, Guozhen</creatorcontrib><creatorcontrib>Jin, Kuijuan</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Ge, Chen</creatorcontrib><title>Large-Scale Hf 0.5 Zr 0.5 O 2 Membranes with Robust Ferroelectricity</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Hafnia-based compounds have considerable potential for use in nanoelectronics due to their compatibility with complementary metal-oxide-semiconductor devices and robust ferroelectricity at nanoscale sizes. However, the unexpected ferroelectricity in this class of compounds often remains elusive due to the polymorphic nature of hafnia, as well as the lack of suitable methods for the characterization of the mixed/complex phases in hafnia thin films. Herein, the preparation of centimeter-scale, crack-free, freestanding Hf
Zr
O
(HZO) nanomembranes that are well suited for investigating the local crystallographic phases, orientations, and grain boundaries at both the microscopic and mesoscopic scales is reported. Atomic-level imaging of the plan-view crystallographic patterns shows that more than 80% of the grains are the ferroelectric orthorhombic phase, and that the mean equivalent diameter of these grains is about 12.1 nm, with values ranging from 4 to 50 nm. Moreover, the ferroelectric orthorhombic phase is stable in substrate-free HZO membranes, indicating that strain from the substrate is not responsible for maintaining the polar phase. It is also demonstrated that HZO capacitors prepared on flexible substrates are highly uniform, stable, and robust. These freestanding membranes provide a viable platform for the exploration of HZO polymorphic films with complex structures and pave the way to flexible nanoelectronics.</description><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRbKxuXcr8gcQ7N4_JXUq1VogUfGzchJvJRCOJKTMp0n9va7Wrb3POgfMJcakgUgB4zXXPEQIqoDynIxGoFFWYAKXHIgCK05CyJJ-IM-8_AYAyyE7FJE5j0oowELcFu3cbPhvurFw0EqJUvrlfLCXKR9tXjr-sl9_t-CGfhmrtRzm3zg22s2Z0rWnHzbk4abjz9uKPU_E6v3uZLcJief8wuylCo0BjyFQrrnWiG6rZsFYGMSM2lGHOYHMkQ02lMYlRK8Bs-0mBSdBAk9REeTwV0X7XuMF7Z5ty5dqe3aZUUO50lDsd5UHHtnC1L6zWVW_rQ_z_f_wDUOxYFA</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Zhong, Hai</creator><creator>Li, Mingqiang</creator><creator>Zhang, Qinghua</creator><creator>Yang, Lihong</creator><creator>He, Ri</creator><creator>Liu, Fang</creator><creator>Liu, Zhuohui</creator><creator>Li, Ge</creator><creator>Sun, Qinchao</creator><creator>Xie, Donggang</creator><creator>Meng, Fanqi</creator><creator>Li, Qiang</creator><creator>He, Meng</creator><creator>Guo, Er-Jia</creator><creator>Wang, Can</creator><creator>Zhong, Zhicheng</creator><creator>Wang, Xinqiang</creator><creator>Gu, Lin</creator><creator>Yang, Guozhen</creator><creator>Jin, Kuijuan</creator><creator>Gao, Peng</creator><creator>Ge, Chen</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8093-940X</orcidid></search><sort><creationdate>202206</creationdate><title>Large-Scale Hf 0.5 Zr 0.5 O 2 Membranes with Robust Ferroelectricity</title><author>Zhong, Hai ; Li, Mingqiang ; Zhang, Qinghua ; Yang, Lihong ; He, Ri ; Liu, Fang ; Liu, Zhuohui ; Li, Ge ; Sun, Qinchao ; Xie, Donggang ; Meng, Fanqi ; Li, Qiang ; He, Meng ; Guo, Er-Jia ; Wang, Can ; Zhong, Zhicheng ; Wang, Xinqiang ; Gu, Lin ; Yang, Guozhen ; Jin, Kuijuan ; Gao, Peng ; Ge, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1072-a9d1ad747f9daca71c2269ac9628a0e829c9fb724327102610910c42c0f4d9983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Hai</creatorcontrib><creatorcontrib>Li, Mingqiang</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Yang, Lihong</creatorcontrib><creatorcontrib>He, Ri</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Liu, Zhuohui</creatorcontrib><creatorcontrib>Li, Ge</creatorcontrib><creatorcontrib>Sun, Qinchao</creatorcontrib><creatorcontrib>Xie, Donggang</creatorcontrib><creatorcontrib>Meng, Fanqi</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>He, Meng</creatorcontrib><creatorcontrib>Guo, Er-Jia</creatorcontrib><creatorcontrib>Wang, Can</creatorcontrib><creatorcontrib>Zhong, Zhicheng</creatorcontrib><creatorcontrib>Wang, Xinqiang</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Yang, Guozhen</creatorcontrib><creatorcontrib>Jin, Kuijuan</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Ge, Chen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Hai</au><au>Li, Mingqiang</au><au>Zhang, Qinghua</au><au>Yang, Lihong</au><au>He, Ri</au><au>Liu, Fang</au><au>Liu, Zhuohui</au><au>Li, Ge</au><au>Sun, Qinchao</au><au>Xie, Donggang</au><au>Meng, Fanqi</au><au>Li, Qiang</au><au>He, Meng</au><au>Guo, Er-Jia</au><au>Wang, Can</au><au>Zhong, Zhicheng</au><au>Wang, Xinqiang</au><au>Gu, Lin</au><au>Yang, Guozhen</au><au>Jin, Kuijuan</au><au>Gao, Peng</au><au>Ge, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Scale Hf 0.5 Zr 0.5 O 2 Membranes with Robust Ferroelectricity</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-06</date><risdate>2022</risdate><volume>34</volume><issue>24</issue><spage>e2109889</spage><pages>e2109889-</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Hafnia-based compounds have considerable potential for use in nanoelectronics due to their compatibility with complementary metal-oxide-semiconductor devices and robust ferroelectricity at nanoscale sizes. However, the unexpected ferroelectricity in this class of compounds often remains elusive due to the polymorphic nature of hafnia, as well as the lack of suitable methods for the characterization of the mixed/complex phases in hafnia thin films. Herein, the preparation of centimeter-scale, crack-free, freestanding Hf
Zr
O
(HZO) nanomembranes that are well suited for investigating the local crystallographic phases, orientations, and grain boundaries at both the microscopic and mesoscopic scales is reported. Atomic-level imaging of the plan-view crystallographic patterns shows that more than 80% of the grains are the ferroelectric orthorhombic phase, and that the mean equivalent diameter of these grains is about 12.1 nm, with values ranging from 4 to 50 nm. Moreover, the ferroelectric orthorhombic phase is stable in substrate-free HZO membranes, indicating that strain from the substrate is not responsible for maintaining the polar phase. It is also demonstrated that HZO capacitors prepared on flexible substrates are highly uniform, stable, and robust. These freestanding membranes provide a viable platform for the exploration of HZO polymorphic films with complex structures and pave the way to flexible nanoelectronics.</abstract><cop>Germany</cop><pmid>35397192</pmid><doi>10.1002/adma.202109889</doi><orcidid>https://orcid.org/0000-0002-8093-940X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-06, Vol.34 (24), p.e2109889 |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_crossref_primary_10_1002_adma_202109889 |
source | Wiley Online Library All Journals |
title | Large-Scale Hf 0.5 Zr 0.5 O 2 Membranes with Robust Ferroelectricity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Scale%20Hf%200.5%20Zr%200.5%20O%202%20Membranes%20with%20Robust%20Ferroelectricity&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhong,%20Hai&rft.date=2022-06&rft.volume=34&rft.issue=24&rft.spage=e2109889&rft.pages=e2109889-&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202109889&rft_dat=%3Cpubmed_cross%3E35397192%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35397192&rfr_iscdi=true |