Large-Scale Hf 0.5 Zr 0.5 O 2 Membranes with Robust Ferroelectricity

Hafnia-based compounds have considerable potential for use in nanoelectronics due to their compatibility with complementary metal-oxide-semiconductor devices and robust ferroelectricity at nanoscale sizes. However, the unexpected ferroelectricity in this class of compounds often remains elusive due...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-06, Vol.34 (24), p.e2109889
Hauptverfasser: Zhong, Hai, Li, Mingqiang, Zhang, Qinghua, Yang, Lihong, He, Ri, Liu, Fang, Liu, Zhuohui, Li, Ge, Sun, Qinchao, Xie, Donggang, Meng, Fanqi, Li, Qiang, He, Meng, Guo, Er-Jia, Wang, Can, Zhong, Zhicheng, Wang, Xinqiang, Gu, Lin, Yang, Guozhen, Jin, Kuijuan, Gao, Peng, Ge, Chen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page e2109889
container_title Advanced materials (Weinheim)
container_volume 34
creator Zhong, Hai
Li, Mingqiang
Zhang, Qinghua
Yang, Lihong
He, Ri
Liu, Fang
Liu, Zhuohui
Li, Ge
Sun, Qinchao
Xie, Donggang
Meng, Fanqi
Li, Qiang
He, Meng
Guo, Er-Jia
Wang, Can
Zhong, Zhicheng
Wang, Xinqiang
Gu, Lin
Yang, Guozhen
Jin, Kuijuan
Gao, Peng
Ge, Chen
description Hafnia-based compounds have considerable potential for use in nanoelectronics due to their compatibility with complementary metal-oxide-semiconductor devices and robust ferroelectricity at nanoscale sizes. However, the unexpected ferroelectricity in this class of compounds often remains elusive due to the polymorphic nature of hafnia, as well as the lack of suitable methods for the characterization of the mixed/complex phases in hafnia thin films. Herein, the preparation of centimeter-scale, crack-free, freestanding Hf Zr O (HZO) nanomembranes that are well suited for investigating the local crystallographic phases, orientations, and grain boundaries at both the microscopic and mesoscopic scales is reported. Atomic-level imaging of the plan-view crystallographic patterns shows that more than 80% of the grains are the ferroelectric orthorhombic phase, and that the mean equivalent diameter of these grains is about 12.1 nm, with values ranging from 4 to 50 nm. Moreover, the ferroelectric orthorhombic phase is stable in substrate-free HZO membranes, indicating that strain from the substrate is not responsible for maintaining the polar phase. It is also demonstrated that HZO capacitors prepared on flexible substrates are highly uniform, stable, and robust. These freestanding membranes provide a viable platform for the exploration of HZO polymorphic films with complex structures and pave the way to flexible nanoelectronics.
doi_str_mv 10.1002/adma.202109889
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adma_202109889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35397192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1072-a9d1ad747f9daca71c2269ac9628a0e829c9fb724327102610910c42c0f4d9983</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRbKxuXcr8gcQ7N4_JXUq1VogUfGzchJvJRCOJKTMp0n9va7Wrb3POgfMJcakgUgB4zXXPEQIqoDynIxGoFFWYAKXHIgCK05CyJJ-IM-8_AYAyyE7FJE5j0oowELcFu3cbPhvurFw0EqJUvrlfLCXKR9tXjr-sl9_t-CGfhmrtRzm3zg22s2Z0rWnHzbk4abjz9uKPU_E6v3uZLcJief8wuylCo0BjyFQrrnWiG6rZsFYGMSM2lGHOYHMkQ02lMYlRK8Bs-0mBSdBAk9REeTwV0X7XuMF7Z5ty5dqe3aZUUO50lDsd5UHHtnC1L6zWVW_rQ_z_f_wDUOxYFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Large-Scale Hf 0.5 Zr 0.5 O 2 Membranes with Robust Ferroelectricity</title><source>Wiley Online Library All Journals</source><creator>Zhong, Hai ; Li, Mingqiang ; Zhang, Qinghua ; Yang, Lihong ; He, Ri ; Liu, Fang ; Liu, Zhuohui ; Li, Ge ; Sun, Qinchao ; Xie, Donggang ; Meng, Fanqi ; Li, Qiang ; He, Meng ; Guo, Er-Jia ; Wang, Can ; Zhong, Zhicheng ; Wang, Xinqiang ; Gu, Lin ; Yang, Guozhen ; Jin, Kuijuan ; Gao, Peng ; Ge, Chen</creator><creatorcontrib>Zhong, Hai ; Li, Mingqiang ; Zhang, Qinghua ; Yang, Lihong ; He, Ri ; Liu, Fang ; Liu, Zhuohui ; Li, Ge ; Sun, Qinchao ; Xie, Donggang ; Meng, Fanqi ; Li, Qiang ; He, Meng ; Guo, Er-Jia ; Wang, Can ; Zhong, Zhicheng ; Wang, Xinqiang ; Gu, Lin ; Yang, Guozhen ; Jin, Kuijuan ; Gao, Peng ; Ge, Chen</creatorcontrib><description>Hafnia-based compounds have considerable potential for use in nanoelectronics due to their compatibility with complementary metal-oxide-semiconductor devices and robust ferroelectricity at nanoscale sizes. However, the unexpected ferroelectricity in this class of compounds often remains elusive due to the polymorphic nature of hafnia, as well as the lack of suitable methods for the characterization of the mixed/complex phases in hafnia thin films. Herein, the preparation of centimeter-scale, crack-free, freestanding Hf Zr O (HZO) nanomembranes that are well suited for investigating the local crystallographic phases, orientations, and grain boundaries at both the microscopic and mesoscopic scales is reported. Atomic-level imaging of the plan-view crystallographic patterns shows that more than 80% of the grains are the ferroelectric orthorhombic phase, and that the mean equivalent diameter of these grains is about 12.1 nm, with values ranging from 4 to 50 nm. Moreover, the ferroelectric orthorhombic phase is stable in substrate-free HZO membranes, indicating that strain from the substrate is not responsible for maintaining the polar phase. It is also demonstrated that HZO capacitors prepared on flexible substrates are highly uniform, stable, and robust. These freestanding membranes provide a viable platform for the exploration of HZO polymorphic films with complex structures and pave the way to flexible nanoelectronics.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202109889</identifier><identifier>PMID: 35397192</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Advanced materials (Weinheim), 2022-06, Vol.34 (24), p.e2109889</ispartof><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1072-a9d1ad747f9daca71c2269ac9628a0e829c9fb724327102610910c42c0f4d9983</citedby><cites>FETCH-LOGICAL-c1072-a9d1ad747f9daca71c2269ac9628a0e829c9fb724327102610910c42c0f4d9983</cites><orcidid>0000-0002-8093-940X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35397192$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhong, Hai</creatorcontrib><creatorcontrib>Li, Mingqiang</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Yang, Lihong</creatorcontrib><creatorcontrib>He, Ri</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Liu, Zhuohui</creatorcontrib><creatorcontrib>Li, Ge</creatorcontrib><creatorcontrib>Sun, Qinchao</creatorcontrib><creatorcontrib>Xie, Donggang</creatorcontrib><creatorcontrib>Meng, Fanqi</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>He, Meng</creatorcontrib><creatorcontrib>Guo, Er-Jia</creatorcontrib><creatorcontrib>Wang, Can</creatorcontrib><creatorcontrib>Zhong, Zhicheng</creatorcontrib><creatorcontrib>Wang, Xinqiang</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Yang, Guozhen</creatorcontrib><creatorcontrib>Jin, Kuijuan</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Ge, Chen</creatorcontrib><title>Large-Scale Hf 0.5 Zr 0.5 O 2 Membranes with Robust Ferroelectricity</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Hafnia-based compounds have considerable potential for use in nanoelectronics due to their compatibility with complementary metal-oxide-semiconductor devices and robust ferroelectricity at nanoscale sizes. However, the unexpected ferroelectricity in this class of compounds often remains elusive due to the polymorphic nature of hafnia, as well as the lack of suitable methods for the characterization of the mixed/complex phases in hafnia thin films. Herein, the preparation of centimeter-scale, crack-free, freestanding Hf Zr O (HZO) nanomembranes that are well suited for investigating the local crystallographic phases, orientations, and grain boundaries at both the microscopic and mesoscopic scales is reported. Atomic-level imaging of the plan-view crystallographic patterns shows that more than 80% of the grains are the ferroelectric orthorhombic phase, and that the mean equivalent diameter of these grains is about 12.1 nm, with values ranging from 4 to 50 nm. Moreover, the ferroelectric orthorhombic phase is stable in substrate-free HZO membranes, indicating that strain from the substrate is not responsible for maintaining the polar phase. It is also demonstrated that HZO capacitors prepared on flexible substrates are highly uniform, stable, and robust. These freestanding membranes provide a viable platform for the exploration of HZO polymorphic films with complex structures and pave the way to flexible nanoelectronics.</description><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRbKxuXcr8gcQ7N4_JXUq1VogUfGzchJvJRCOJKTMp0n9va7Wrb3POgfMJcakgUgB4zXXPEQIqoDynIxGoFFWYAKXHIgCK05CyJJ-IM-8_AYAyyE7FJE5j0oowELcFu3cbPhvurFw0EqJUvrlfLCXKR9tXjr-sl9_t-CGfhmrtRzm3zg22s2Z0rWnHzbk4abjz9uKPU_E6v3uZLcJief8wuylCo0BjyFQrrnWiG6rZsFYGMSM2lGHOYHMkQ02lMYlRK8Bs-0mBSdBAk9REeTwV0X7XuMF7Z5ty5dqe3aZUUO50lDsd5UHHtnC1L6zWVW_rQ_z_f_wDUOxYFA</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Zhong, Hai</creator><creator>Li, Mingqiang</creator><creator>Zhang, Qinghua</creator><creator>Yang, Lihong</creator><creator>He, Ri</creator><creator>Liu, Fang</creator><creator>Liu, Zhuohui</creator><creator>Li, Ge</creator><creator>Sun, Qinchao</creator><creator>Xie, Donggang</creator><creator>Meng, Fanqi</creator><creator>Li, Qiang</creator><creator>He, Meng</creator><creator>Guo, Er-Jia</creator><creator>Wang, Can</creator><creator>Zhong, Zhicheng</creator><creator>Wang, Xinqiang</creator><creator>Gu, Lin</creator><creator>Yang, Guozhen</creator><creator>Jin, Kuijuan</creator><creator>Gao, Peng</creator><creator>Ge, Chen</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8093-940X</orcidid></search><sort><creationdate>202206</creationdate><title>Large-Scale Hf 0.5 Zr 0.5 O 2 Membranes with Robust Ferroelectricity</title><author>Zhong, Hai ; Li, Mingqiang ; Zhang, Qinghua ; Yang, Lihong ; He, Ri ; Liu, Fang ; Liu, Zhuohui ; Li, Ge ; Sun, Qinchao ; Xie, Donggang ; Meng, Fanqi ; Li, Qiang ; He, Meng ; Guo, Er-Jia ; Wang, Can ; Zhong, Zhicheng ; Wang, Xinqiang ; Gu, Lin ; Yang, Guozhen ; Jin, Kuijuan ; Gao, Peng ; Ge, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1072-a9d1ad747f9daca71c2269ac9628a0e829c9fb724327102610910c42c0f4d9983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Hai</creatorcontrib><creatorcontrib>Li, Mingqiang</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Yang, Lihong</creatorcontrib><creatorcontrib>He, Ri</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Liu, Zhuohui</creatorcontrib><creatorcontrib>Li, Ge</creatorcontrib><creatorcontrib>Sun, Qinchao</creatorcontrib><creatorcontrib>Xie, Donggang</creatorcontrib><creatorcontrib>Meng, Fanqi</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>He, Meng</creatorcontrib><creatorcontrib>Guo, Er-Jia</creatorcontrib><creatorcontrib>Wang, Can</creatorcontrib><creatorcontrib>Zhong, Zhicheng</creatorcontrib><creatorcontrib>Wang, Xinqiang</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Yang, Guozhen</creatorcontrib><creatorcontrib>Jin, Kuijuan</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Ge, Chen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Hai</au><au>Li, Mingqiang</au><au>Zhang, Qinghua</au><au>Yang, Lihong</au><au>He, Ri</au><au>Liu, Fang</au><au>Liu, Zhuohui</au><au>Li, Ge</au><au>Sun, Qinchao</au><au>Xie, Donggang</au><au>Meng, Fanqi</au><au>Li, Qiang</au><au>He, Meng</au><au>Guo, Er-Jia</au><au>Wang, Can</au><au>Zhong, Zhicheng</au><au>Wang, Xinqiang</au><au>Gu, Lin</au><au>Yang, Guozhen</au><au>Jin, Kuijuan</au><au>Gao, Peng</au><au>Ge, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Scale Hf 0.5 Zr 0.5 O 2 Membranes with Robust Ferroelectricity</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-06</date><risdate>2022</risdate><volume>34</volume><issue>24</issue><spage>e2109889</spage><pages>e2109889-</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Hafnia-based compounds have considerable potential for use in nanoelectronics due to their compatibility with complementary metal-oxide-semiconductor devices and robust ferroelectricity at nanoscale sizes. However, the unexpected ferroelectricity in this class of compounds often remains elusive due to the polymorphic nature of hafnia, as well as the lack of suitable methods for the characterization of the mixed/complex phases in hafnia thin films. Herein, the preparation of centimeter-scale, crack-free, freestanding Hf Zr O (HZO) nanomembranes that are well suited for investigating the local crystallographic phases, orientations, and grain boundaries at both the microscopic and mesoscopic scales is reported. Atomic-level imaging of the plan-view crystallographic patterns shows that more than 80% of the grains are the ferroelectric orthorhombic phase, and that the mean equivalent diameter of these grains is about 12.1 nm, with values ranging from 4 to 50 nm. Moreover, the ferroelectric orthorhombic phase is stable in substrate-free HZO membranes, indicating that strain from the substrate is not responsible for maintaining the polar phase. It is also demonstrated that HZO capacitors prepared on flexible substrates are highly uniform, stable, and robust. These freestanding membranes provide a viable platform for the exploration of HZO polymorphic films with complex structures and pave the way to flexible nanoelectronics.</abstract><cop>Germany</cop><pmid>35397192</pmid><doi>10.1002/adma.202109889</doi><orcidid>https://orcid.org/0000-0002-8093-940X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-06, Vol.34 (24), p.e2109889
issn 0935-9648
1521-4095
language eng
recordid cdi_crossref_primary_10_1002_adma_202109889
source Wiley Online Library All Journals
title Large-Scale Hf 0.5 Zr 0.5 O 2 Membranes with Robust Ferroelectricity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Scale%20Hf%200.5%20Zr%200.5%20O%202%20Membranes%20with%20Robust%20Ferroelectricity&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhong,%20Hai&rft.date=2022-06&rft.volume=34&rft.issue=24&rft.spage=e2109889&rft.pages=e2109889-&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202109889&rft_dat=%3Cpubmed_cross%3E35397192%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35397192&rfr_iscdi=true