Gate‐Defined Quantum Confinement in CVD 2D WS 2

Temperature‐dependent transport measurements are performed on the same set of chemical vapor deposition (CVD)‐grown WS 2 single‐ and bilayer devices before and after atomic layer deposition (ALD) of HfO 2 . This isolates the influence of HfO 2 deposition on low‐temperature carrier transport and show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-06, Vol.34 (25)
Hauptverfasser: Lau, Chit Siong, Chee, Jing Yee, Cao, Liemao, Ooi, Zi‐En, Tong, Shi Wun, Bosman, Michel, Bussolotti, Fabio, Deng, Tianqi, Wu, Gang, Yang, Shuo‐Wang, Wang, Tong, Teo, Siew Lang, Wong, Calvin Pei Yu, Chai, Jian Wei, Chen, Li, Zhang, Zhong Ming, Ang, Kah‐Wee, Ang, Yee Sin, Goh, Kuan Eng Johnson
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 25
container_start_page
container_title Advanced materials (Weinheim)
container_volume 34
creator Lau, Chit Siong
Chee, Jing Yee
Cao, Liemao
Ooi, Zi‐En
Tong, Shi Wun
Bosman, Michel
Bussolotti, Fabio
Deng, Tianqi
Wu, Gang
Yang, Shuo‐Wang
Wang, Tong
Teo, Siew Lang
Wong, Calvin Pei Yu
Chai, Jian Wei
Chen, Li
Zhang, Zhong Ming
Ang, Kah‐Wee
Ang, Yee Sin
Goh, Kuan Eng Johnson
description Temperature‐dependent transport measurements are performed on the same set of chemical vapor deposition (CVD)‐grown WS 2 single‐ and bilayer devices before and after atomic layer deposition (ALD) of HfO 2 . This isolates the influence of HfO 2 deposition on low‐temperature carrier transport and shows that carrier mobility is not charge impurity limited as commonly thought, but due to another important but commonly overlooked factor: interface roughness. This finding is corroborated by circular dichroic photoluminescence spectroscopy, X‐ray photoemission spectroscopy, cross‐sectional scanning transmission electron microscopy, carrier‐transport modeling, and density functional modeling. Finally, electrostatic gate‐defined quantum confinement is demonstrated using a scalable approach of large‐area CVD‐grown bilayer WS 2 and ALD‐grown HfO 2 . The high dielectric constant and low leakage current enabled by HfO 2 allows an estimated quantum dot size as small as 58 nm. The ability to lithographically define increasingly smaller devices is especially important for transition metal dichalcogenides due to their large effective masses, and should pave the way toward their use in quantum information processing applications.
doi_str_mv 10.1002/adma.202103907
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adma_202103907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adma_202103907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c847-fd7c7fdffc507e92814fef310fc340571525720e8454f6efc8064cb681238b263</originalsourceid><addsrcrecordid>eNo9z81KxDAUBeAgCtbRreu8QOvNf7KUVmeEARlm0GXIpLlQsRlpOwt3PoLP6JNoUVwdOIvD-Qi5ZlAxAH4T2j5UHDgD4cCckIIpzkoJTp2SApxQpdPSnpOLcXwBAKdBF4Qtw5S-Pj6bhF1OLd0cQ56OPa0PeS76lCfaZVo_NZQ39HlL-SU5w_A6pqu_XJDd_d2uXpXrx-VDfbsuo5WmxNZEgy1iVGCS45ZJTCgYYBQSlPn5pgyHZKWSqBNGC1rGvbaMC7vnWixI9Tsbh8M4Dgn929D1YXj3DPzs9bPX_3vFNzYuRv4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gate‐Defined Quantum Confinement in CVD 2D WS 2</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lau, Chit Siong ; Chee, Jing Yee ; Cao, Liemao ; Ooi, Zi‐En ; Tong, Shi Wun ; Bosman, Michel ; Bussolotti, Fabio ; Deng, Tianqi ; Wu, Gang ; Yang, Shuo‐Wang ; Wang, Tong ; Teo, Siew Lang ; Wong, Calvin Pei Yu ; Chai, Jian Wei ; Chen, Li ; Zhang, Zhong Ming ; Ang, Kah‐Wee ; Ang, Yee Sin ; Goh, Kuan Eng Johnson</creator><creatorcontrib>Lau, Chit Siong ; Chee, Jing Yee ; Cao, Liemao ; Ooi, Zi‐En ; Tong, Shi Wun ; Bosman, Michel ; Bussolotti, Fabio ; Deng, Tianqi ; Wu, Gang ; Yang, Shuo‐Wang ; Wang, Tong ; Teo, Siew Lang ; Wong, Calvin Pei Yu ; Chai, Jian Wei ; Chen, Li ; Zhang, Zhong Ming ; Ang, Kah‐Wee ; Ang, Yee Sin ; Goh, Kuan Eng Johnson</creatorcontrib><description>Temperature‐dependent transport measurements are performed on the same set of chemical vapor deposition (CVD)‐grown WS 2 single‐ and bilayer devices before and after atomic layer deposition (ALD) of HfO 2 . This isolates the influence of HfO 2 deposition on low‐temperature carrier transport and shows that carrier mobility is not charge impurity limited as commonly thought, but due to another important but commonly overlooked factor: interface roughness. This finding is corroborated by circular dichroic photoluminescence spectroscopy, X‐ray photoemission spectroscopy, cross‐sectional scanning transmission electron microscopy, carrier‐transport modeling, and density functional modeling. Finally, electrostatic gate‐defined quantum confinement is demonstrated using a scalable approach of large‐area CVD‐grown bilayer WS 2 and ALD‐grown HfO 2 . The high dielectric constant and low leakage current enabled by HfO 2 allows an estimated quantum dot size as small as 58 nm. The ability to lithographically define increasingly smaller devices is especially important for transition metal dichalcogenides due to their large effective masses, and should pave the way toward their use in quantum information processing applications.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202103907</identifier><language>eng</language><ispartof>Advanced materials (Weinheim), 2022-06, Vol.34 (25)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c847-fd7c7fdffc507e92814fef310fc340571525720e8454f6efc8064cb681238b263</citedby><cites>FETCH-LOGICAL-c847-fd7c7fdffc507e92814fef310fc340571525720e8454f6efc8064cb681238b263</cites><orcidid>0000-0001-8938-2495 ; 0000-0003-3584-1873 ; 0000-0001-7042-4122 ; 0000-0001-8725-4545 ; 0000-0003-0599-9696 ; 0000-0002-6590-070X ; 0000-0002-1637-1610 ; 0000-0001-9533-6655 ; 0000-0002-8717-7655 ; 0000-0003-1919-3351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Lau, Chit Siong</creatorcontrib><creatorcontrib>Chee, Jing Yee</creatorcontrib><creatorcontrib>Cao, Liemao</creatorcontrib><creatorcontrib>Ooi, Zi‐En</creatorcontrib><creatorcontrib>Tong, Shi Wun</creatorcontrib><creatorcontrib>Bosman, Michel</creatorcontrib><creatorcontrib>Bussolotti, Fabio</creatorcontrib><creatorcontrib>Deng, Tianqi</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Yang, Shuo‐Wang</creatorcontrib><creatorcontrib>Wang, Tong</creatorcontrib><creatorcontrib>Teo, Siew Lang</creatorcontrib><creatorcontrib>Wong, Calvin Pei Yu</creatorcontrib><creatorcontrib>Chai, Jian Wei</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Zhang, Zhong Ming</creatorcontrib><creatorcontrib>Ang, Kah‐Wee</creatorcontrib><creatorcontrib>Ang, Yee Sin</creatorcontrib><creatorcontrib>Goh, Kuan Eng Johnson</creatorcontrib><title>Gate‐Defined Quantum Confinement in CVD 2D WS 2</title><title>Advanced materials (Weinheim)</title><description>Temperature‐dependent transport measurements are performed on the same set of chemical vapor deposition (CVD)‐grown WS 2 single‐ and bilayer devices before and after atomic layer deposition (ALD) of HfO 2 . This isolates the influence of HfO 2 deposition on low‐temperature carrier transport and shows that carrier mobility is not charge impurity limited as commonly thought, but due to another important but commonly overlooked factor: interface roughness. This finding is corroborated by circular dichroic photoluminescence spectroscopy, X‐ray photoemission spectroscopy, cross‐sectional scanning transmission electron microscopy, carrier‐transport modeling, and density functional modeling. Finally, electrostatic gate‐defined quantum confinement is demonstrated using a scalable approach of large‐area CVD‐grown bilayer WS 2 and ALD‐grown HfO 2 . The high dielectric constant and low leakage current enabled by HfO 2 allows an estimated quantum dot size as small as 58 nm. The ability to lithographically define increasingly smaller devices is especially important for transition metal dichalcogenides due to their large effective masses, and should pave the way toward their use in quantum information processing applications.</description><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9z81KxDAUBeAgCtbRreu8QOvNf7KUVmeEARlm0GXIpLlQsRlpOwt3PoLP6JNoUVwdOIvD-Qi5ZlAxAH4T2j5UHDgD4cCckIIpzkoJTp2SApxQpdPSnpOLcXwBAKdBF4Qtw5S-Pj6bhF1OLd0cQ56OPa0PeS76lCfaZVo_NZQ39HlL-SU5w_A6pqu_XJDd_d2uXpXrx-VDfbsuo5WmxNZEgy1iVGCS45ZJTCgYYBQSlPn5pgyHZKWSqBNGC1rGvbaMC7vnWixI9Tsbh8M4Dgn929D1YXj3DPzs9bPX_3vFNzYuRv4</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Lau, Chit Siong</creator><creator>Chee, Jing Yee</creator><creator>Cao, Liemao</creator><creator>Ooi, Zi‐En</creator><creator>Tong, Shi Wun</creator><creator>Bosman, Michel</creator><creator>Bussolotti, Fabio</creator><creator>Deng, Tianqi</creator><creator>Wu, Gang</creator><creator>Yang, Shuo‐Wang</creator><creator>Wang, Tong</creator><creator>Teo, Siew Lang</creator><creator>Wong, Calvin Pei Yu</creator><creator>Chai, Jian Wei</creator><creator>Chen, Li</creator><creator>Zhang, Zhong Ming</creator><creator>Ang, Kah‐Wee</creator><creator>Ang, Yee Sin</creator><creator>Goh, Kuan Eng Johnson</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8938-2495</orcidid><orcidid>https://orcid.org/0000-0003-3584-1873</orcidid><orcidid>https://orcid.org/0000-0001-7042-4122</orcidid><orcidid>https://orcid.org/0000-0001-8725-4545</orcidid><orcidid>https://orcid.org/0000-0003-0599-9696</orcidid><orcidid>https://orcid.org/0000-0002-6590-070X</orcidid><orcidid>https://orcid.org/0000-0002-1637-1610</orcidid><orcidid>https://orcid.org/0000-0001-9533-6655</orcidid><orcidid>https://orcid.org/0000-0002-8717-7655</orcidid><orcidid>https://orcid.org/0000-0003-1919-3351</orcidid></search><sort><creationdate>202206</creationdate><title>Gate‐Defined Quantum Confinement in CVD 2D WS 2</title><author>Lau, Chit Siong ; Chee, Jing Yee ; Cao, Liemao ; Ooi, Zi‐En ; Tong, Shi Wun ; Bosman, Michel ; Bussolotti, Fabio ; Deng, Tianqi ; Wu, Gang ; Yang, Shuo‐Wang ; Wang, Tong ; Teo, Siew Lang ; Wong, Calvin Pei Yu ; Chai, Jian Wei ; Chen, Li ; Zhang, Zhong Ming ; Ang, Kah‐Wee ; Ang, Yee Sin ; Goh, Kuan Eng Johnson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c847-fd7c7fdffc507e92814fef310fc340571525720e8454f6efc8064cb681238b263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lau, Chit Siong</creatorcontrib><creatorcontrib>Chee, Jing Yee</creatorcontrib><creatorcontrib>Cao, Liemao</creatorcontrib><creatorcontrib>Ooi, Zi‐En</creatorcontrib><creatorcontrib>Tong, Shi Wun</creatorcontrib><creatorcontrib>Bosman, Michel</creatorcontrib><creatorcontrib>Bussolotti, Fabio</creatorcontrib><creatorcontrib>Deng, Tianqi</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Yang, Shuo‐Wang</creatorcontrib><creatorcontrib>Wang, Tong</creatorcontrib><creatorcontrib>Teo, Siew Lang</creatorcontrib><creatorcontrib>Wong, Calvin Pei Yu</creatorcontrib><creatorcontrib>Chai, Jian Wei</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Zhang, Zhong Ming</creatorcontrib><creatorcontrib>Ang, Kah‐Wee</creatorcontrib><creatorcontrib>Ang, Yee Sin</creatorcontrib><creatorcontrib>Goh, Kuan Eng Johnson</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau, Chit Siong</au><au>Chee, Jing Yee</au><au>Cao, Liemao</au><au>Ooi, Zi‐En</au><au>Tong, Shi Wun</au><au>Bosman, Michel</au><au>Bussolotti, Fabio</au><au>Deng, Tianqi</au><au>Wu, Gang</au><au>Yang, Shuo‐Wang</au><au>Wang, Tong</au><au>Teo, Siew Lang</au><au>Wong, Calvin Pei Yu</au><au>Chai, Jian Wei</au><au>Chen, Li</au><au>Zhang, Zhong Ming</au><au>Ang, Kah‐Wee</au><au>Ang, Yee Sin</au><au>Goh, Kuan Eng Johnson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gate‐Defined Quantum Confinement in CVD 2D WS 2</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2022-06</date><risdate>2022</risdate><volume>34</volume><issue>25</issue><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Temperature‐dependent transport measurements are performed on the same set of chemical vapor deposition (CVD)‐grown WS 2 single‐ and bilayer devices before and after atomic layer deposition (ALD) of HfO 2 . This isolates the influence of HfO 2 deposition on low‐temperature carrier transport and shows that carrier mobility is not charge impurity limited as commonly thought, but due to another important but commonly overlooked factor: interface roughness. This finding is corroborated by circular dichroic photoluminescence spectroscopy, X‐ray photoemission spectroscopy, cross‐sectional scanning transmission electron microscopy, carrier‐transport modeling, and density functional modeling. Finally, electrostatic gate‐defined quantum confinement is demonstrated using a scalable approach of large‐area CVD‐grown bilayer WS 2 and ALD‐grown HfO 2 . The high dielectric constant and low leakage current enabled by HfO 2 allows an estimated quantum dot size as small as 58 nm. The ability to lithographically define increasingly smaller devices is especially important for transition metal dichalcogenides due to their large effective masses, and should pave the way toward their use in quantum information processing applications.</abstract><doi>10.1002/adma.202103907</doi><orcidid>https://orcid.org/0000-0001-8938-2495</orcidid><orcidid>https://orcid.org/0000-0003-3584-1873</orcidid><orcidid>https://orcid.org/0000-0001-7042-4122</orcidid><orcidid>https://orcid.org/0000-0001-8725-4545</orcidid><orcidid>https://orcid.org/0000-0003-0599-9696</orcidid><orcidid>https://orcid.org/0000-0002-6590-070X</orcidid><orcidid>https://orcid.org/0000-0002-1637-1610</orcidid><orcidid>https://orcid.org/0000-0001-9533-6655</orcidid><orcidid>https://orcid.org/0000-0002-8717-7655</orcidid><orcidid>https://orcid.org/0000-0003-1919-3351</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-06, Vol.34 (25)
issn 0935-9648
1521-4095
language eng
recordid cdi_crossref_primary_10_1002_adma_202103907
source Wiley Online Library Journals Frontfile Complete
title Gate‐Defined Quantum Confinement in CVD 2D WS 2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gate%E2%80%90Defined%20Quantum%20Confinement%20in%20CVD%202D%20WS%202&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Lau,%20Chit%20Siong&rft.date=2022-06&rft.volume=34&rft.issue=25&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202103907&rft_dat=%3Ccrossref%3E10_1002_adma_202103907%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true