Graphite Nanoplatelet Reinforcement of Electrospun Polyacrylonitrile Nanofibers
Thin graphite nanoplatelets synthesized by an intercalation/exfoliation process are incorporated into a polymer fiber matrix by an electrospinning process, creating ultrafine nanocomposite fibrils (see Figure). Uniform nanofibers of average diameter 300 nm show a modest increase in thermal stability...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2005-01, Vol.17 (1), p.77-80 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 80 |
---|---|
container_issue | 1 |
container_start_page | 77 |
container_title | Advanced materials (Weinheim) |
container_volume | 17 |
creator | Mack, J. J. Viculis, L. M. Ali, A. Luoh, R. Yang, G. Hahn, H. T. Ko, F. K. Kaner, R. B. |
description | Thin graphite nanoplatelets synthesized by an intercalation/exfoliation process are incorporated into a polymer fiber matrix by an electrospinning process, creating ultrafine nanocomposite fibrils (see Figure). Uniform nanofibers of average diameter 300 nm show a modest increase in thermal stability with increasing weight percentage of graphite nanoplatelets. The mechanical properties of the fibrils are examined, and the normalized Young's modulus is found to increase two‐fold upon addition of 4 wt.‐% graphite nanoplatelets. |
doi_str_mv | 10.1002/adma.200400133 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adma_200400133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_JJDKQ30D_6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3273-226dd0517e3e8d7cea4b6cee7b58755665c24303e0688af4b8a1f4561e7c8fd13</originalsourceid><addsrcrecordid>eNqF0DFPwzAQBWALgUQprMz5AynnOLaTsWpLoZQWEIjRcpyzCKRJ5BhB_j2pgio2plvue3p6hFxSmFCA6ErnOz2JAGIAytgRGVEe0TCGlB-TEaSMh6mIk1Ny1rbvAJAKECOyXTrdvBUeg42u6qbUHkv0wRMWla2dwR1WPqhtsCjReFe3zWcVPNRlp43ryroqvCvKwdoiQ9eekxOryxYvfu-YvFwvnmc34Xq7vJ1N16FhkWRhFIk8B04lMkxyaVDHmTCIMuOJ5FwIbqKYAUMQSaJtnCWa2pgLitIkNqdsTCZDrulLtQ6talyx065TFNR-DrWfQx3m6EE6gK--cPfPt5rO76d_bTjYovX4fbDafSghmeTqdbNUq9X87pHBXAn2A0ssdJY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Graphite Nanoplatelet Reinforcement of Electrospun Polyacrylonitrile Nanofibers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mack, J. J. ; Viculis, L. M. ; Ali, A. ; Luoh, R. ; Yang, G. ; Hahn, H. T. ; Ko, F. K. ; Kaner, R. B.</creator><creatorcontrib>Mack, J. J. ; Viculis, L. M. ; Ali, A. ; Luoh, R. ; Yang, G. ; Hahn, H. T. ; Ko, F. K. ; Kaner, R. B.</creatorcontrib><description>Thin graphite nanoplatelets synthesized by an intercalation/exfoliation process are incorporated into a polymer fiber matrix by an electrospinning process, creating ultrafine nanocomposite fibrils (see Figure). Uniform nanofibers of average diameter 300 nm show a modest increase in thermal stability with increasing weight percentage of graphite nanoplatelets. The mechanical properties of the fibrils are examined, and the normalized Young's modulus is found to increase two‐fold upon addition of 4 wt.‐% graphite nanoplatelets.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.200400133</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Electrospinning ; Graphite ; Nanocomposites ; Nanofibers</subject><ispartof>Advanced materials (Weinheim), 2005-01, Vol.17 (1), p.77-80</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3273-226dd0517e3e8d7cea4b6cee7b58755665c24303e0688af4b8a1f4561e7c8fd13</citedby><cites>FETCH-LOGICAL-c3273-226dd0517e3e8d7cea4b6cee7b58755665c24303e0688af4b8a1f4561e7c8fd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.200400133$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45551</link.rule.ids></links><search><creatorcontrib>Mack, J. J.</creatorcontrib><creatorcontrib>Viculis, L. M.</creatorcontrib><creatorcontrib>Ali, A.</creatorcontrib><creatorcontrib>Luoh, R.</creatorcontrib><creatorcontrib>Yang, G.</creatorcontrib><creatorcontrib>Hahn, H. T.</creatorcontrib><creatorcontrib>Ko, F. K.</creatorcontrib><creatorcontrib>Kaner, R. B.</creatorcontrib><title>Graphite Nanoplatelet Reinforcement of Electrospun Polyacrylonitrile Nanofibers</title><title>Advanced materials (Weinheim)</title><addtitle>Adv. Mater</addtitle><description>Thin graphite nanoplatelets synthesized by an intercalation/exfoliation process are incorporated into a polymer fiber matrix by an electrospinning process, creating ultrafine nanocomposite fibrils (see Figure). Uniform nanofibers of average diameter 300 nm show a modest increase in thermal stability with increasing weight percentage of graphite nanoplatelets. The mechanical properties of the fibrils are examined, and the normalized Young's modulus is found to increase two‐fold upon addition of 4 wt.‐% graphite nanoplatelets.</description><subject>Electrospinning</subject><subject>Graphite</subject><subject>Nanocomposites</subject><subject>Nanofibers</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqF0DFPwzAQBWALgUQprMz5AynnOLaTsWpLoZQWEIjRcpyzCKRJ5BhB_j2pgio2plvue3p6hFxSmFCA6ErnOz2JAGIAytgRGVEe0TCGlB-TEaSMh6mIk1Ny1rbvAJAKECOyXTrdvBUeg42u6qbUHkv0wRMWla2dwR1WPqhtsCjReFe3zWcVPNRlp43ryroqvCvKwdoiQ9eekxOryxYvfu-YvFwvnmc34Xq7vJ1N16FhkWRhFIk8B04lMkxyaVDHmTCIMuOJ5FwIbqKYAUMQSaJtnCWa2pgLitIkNqdsTCZDrulLtQ6talyx065TFNR-DrWfQx3m6EE6gK--cPfPt5rO76d_bTjYovX4fbDafSghmeTqdbNUq9X87pHBXAn2A0ssdJY</recordid><startdate>20050118</startdate><enddate>20050118</enddate><creator>Mack, J. J.</creator><creator>Viculis, L. M.</creator><creator>Ali, A.</creator><creator>Luoh, R.</creator><creator>Yang, G.</creator><creator>Hahn, H. T.</creator><creator>Ko, F. K.</creator><creator>Kaner, R. B.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050118</creationdate><title>Graphite Nanoplatelet Reinforcement of Electrospun Polyacrylonitrile Nanofibers</title><author>Mack, J. J. ; Viculis, L. M. ; Ali, A. ; Luoh, R. ; Yang, G. ; Hahn, H. T. ; Ko, F. K. ; Kaner, R. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3273-226dd0517e3e8d7cea4b6cee7b58755665c24303e0688af4b8a1f4561e7c8fd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Electrospinning</topic><topic>Graphite</topic><topic>Nanocomposites</topic><topic>Nanofibers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mack, J. J.</creatorcontrib><creatorcontrib>Viculis, L. M.</creatorcontrib><creatorcontrib>Ali, A.</creatorcontrib><creatorcontrib>Luoh, R.</creatorcontrib><creatorcontrib>Yang, G.</creatorcontrib><creatorcontrib>Hahn, H. T.</creatorcontrib><creatorcontrib>Ko, F. K.</creatorcontrib><creatorcontrib>Kaner, R. B.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mack, J. J.</au><au>Viculis, L. M.</au><au>Ali, A.</au><au>Luoh, R.</au><au>Yang, G.</au><au>Hahn, H. T.</au><au>Ko, F. K.</au><au>Kaner, R. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphite Nanoplatelet Reinforcement of Electrospun Polyacrylonitrile Nanofibers</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv. Mater</addtitle><date>2005-01-18</date><risdate>2005</risdate><volume>17</volume><issue>1</issue><spage>77</spage><epage>80</epage><pages>77-80</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Thin graphite nanoplatelets synthesized by an intercalation/exfoliation process are incorporated into a polymer fiber matrix by an electrospinning process, creating ultrafine nanocomposite fibrils (see Figure). Uniform nanofibers of average diameter 300 nm show a modest increase in thermal stability with increasing weight percentage of graphite nanoplatelets. The mechanical properties of the fibrils are examined, and the normalized Young's modulus is found to increase two‐fold upon addition of 4 wt.‐% graphite nanoplatelets.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adma.200400133</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2005-01, Vol.17 (1), p.77-80 |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_crossref_primary_10_1002_adma_200400133 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Electrospinning Graphite Nanocomposites Nanofibers |
title | Graphite Nanoplatelet Reinforcement of Electrospun Polyacrylonitrile Nanofibers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A36%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphite%20Nanoplatelet%20Reinforcement%20of%20Electrospun%20Polyacrylonitrile%20Nanofibers&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Mack,%20J.%E2%80%89J.&rft.date=2005-01-18&rft.volume=17&rft.issue=1&rft.spage=77&rft.epage=80&rft.pages=77-80&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.200400133&rft_dat=%3Cistex_cross%3Eark_67375_WNG_JJDKQ30D_6%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |