Graphite Nanoplatelet Reinforcement of Electrospun Polyacrylonitrile Nanofibers

Thin graphite nanoplatelets synthesized by an intercalation/exfoliation process are incorporated into a polymer fiber matrix by an electrospinning process, creating ultrafine nanocomposite fibrils (see Figure). Uniform nanofibers of average diameter 300 nm show a modest increase in thermal stability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2005-01, Vol.17 (1), p.77-80
Hauptverfasser: Mack, J. J., Viculis, L. M., Ali, A., Luoh, R., Yang, G., Hahn, H. T., Ko, F. K., Kaner, R. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 80
container_issue 1
container_start_page 77
container_title Advanced materials (Weinheim)
container_volume 17
creator Mack, J. J.
Viculis, L. M.
Ali, A.
Luoh, R.
Yang, G.
Hahn, H. T.
Ko, F. K.
Kaner, R. B.
description Thin graphite nanoplatelets synthesized by an intercalation/exfoliation process are incorporated into a polymer fiber matrix by an electrospinning process, creating ultrafine nanocomposite fibrils (see Figure). Uniform nanofibers of average diameter 300 nm show a modest increase in thermal stability with increasing weight percentage of graphite nanoplatelets. The mechanical properties of the fibrils are examined, and the normalized Young's modulus is found to increase two‐fold upon addition of 4 wt.‐% graphite nanoplatelets.
doi_str_mv 10.1002/adma.200400133
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adma_200400133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_JJDKQ30D_6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3273-226dd0517e3e8d7cea4b6cee7b58755665c24303e0688af4b8a1f4561e7c8fd13</originalsourceid><addsrcrecordid>eNqF0DFPwzAQBWALgUQprMz5AynnOLaTsWpLoZQWEIjRcpyzCKRJ5BhB_j2pgio2plvue3p6hFxSmFCA6ErnOz2JAGIAytgRGVEe0TCGlB-TEaSMh6mIk1Ny1rbvAJAKECOyXTrdvBUeg42u6qbUHkv0wRMWla2dwR1WPqhtsCjReFe3zWcVPNRlp43ryroqvCvKwdoiQ9eekxOryxYvfu-YvFwvnmc34Xq7vJ1N16FhkWRhFIk8B04lMkxyaVDHmTCIMuOJ5FwIbqKYAUMQSaJtnCWa2pgLitIkNqdsTCZDrulLtQ6talyx065TFNR-DrWfQx3m6EE6gK--cPfPt5rO76d_bTjYovX4fbDafSghmeTqdbNUq9X87pHBXAn2A0ssdJY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Graphite Nanoplatelet Reinforcement of Electrospun Polyacrylonitrile Nanofibers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mack, J. J. ; Viculis, L. M. ; Ali, A. ; Luoh, R. ; Yang, G. ; Hahn, H. T. ; Ko, F. K. ; Kaner, R. B.</creator><creatorcontrib>Mack, J. J. ; Viculis, L. M. ; Ali, A. ; Luoh, R. ; Yang, G. ; Hahn, H. T. ; Ko, F. K. ; Kaner, R. B.</creatorcontrib><description>Thin graphite nanoplatelets synthesized by an intercalation/exfoliation process are incorporated into a polymer fiber matrix by an electrospinning process, creating ultrafine nanocomposite fibrils (see Figure). Uniform nanofibers of average diameter 300 nm show a modest increase in thermal stability with increasing weight percentage of graphite nanoplatelets. The mechanical properties of the fibrils are examined, and the normalized Young's modulus is found to increase two‐fold upon addition of 4 wt.‐% graphite nanoplatelets.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.200400133</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Electrospinning ; Graphite ; Nanocomposites ; Nanofibers</subject><ispartof>Advanced materials (Weinheim), 2005-01, Vol.17 (1), p.77-80</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3273-226dd0517e3e8d7cea4b6cee7b58755665c24303e0688af4b8a1f4561e7c8fd13</citedby><cites>FETCH-LOGICAL-c3273-226dd0517e3e8d7cea4b6cee7b58755665c24303e0688af4b8a1f4561e7c8fd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.200400133$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45551</link.rule.ids></links><search><creatorcontrib>Mack, J. J.</creatorcontrib><creatorcontrib>Viculis, L. M.</creatorcontrib><creatorcontrib>Ali, A.</creatorcontrib><creatorcontrib>Luoh, R.</creatorcontrib><creatorcontrib>Yang, G.</creatorcontrib><creatorcontrib>Hahn, H. T.</creatorcontrib><creatorcontrib>Ko, F. K.</creatorcontrib><creatorcontrib>Kaner, R. B.</creatorcontrib><title>Graphite Nanoplatelet Reinforcement of Electrospun Polyacrylonitrile Nanofibers</title><title>Advanced materials (Weinheim)</title><addtitle>Adv. Mater</addtitle><description>Thin graphite nanoplatelets synthesized by an intercalation/exfoliation process are incorporated into a polymer fiber matrix by an electrospinning process, creating ultrafine nanocomposite fibrils (see Figure). Uniform nanofibers of average diameter 300 nm show a modest increase in thermal stability with increasing weight percentage of graphite nanoplatelets. The mechanical properties of the fibrils are examined, and the normalized Young's modulus is found to increase two‐fold upon addition of 4 wt.‐% graphite nanoplatelets.</description><subject>Electrospinning</subject><subject>Graphite</subject><subject>Nanocomposites</subject><subject>Nanofibers</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqF0DFPwzAQBWALgUQprMz5AynnOLaTsWpLoZQWEIjRcpyzCKRJ5BhB_j2pgio2plvue3p6hFxSmFCA6ErnOz2JAGIAytgRGVEe0TCGlB-TEaSMh6mIk1Ny1rbvAJAKECOyXTrdvBUeg42u6qbUHkv0wRMWla2dwR1WPqhtsCjReFe3zWcVPNRlp43ryroqvCvKwdoiQ9eekxOryxYvfu-YvFwvnmc34Xq7vJ1N16FhkWRhFIk8B04lMkxyaVDHmTCIMuOJ5FwIbqKYAUMQSaJtnCWa2pgLitIkNqdsTCZDrulLtQ6talyx065TFNR-DrWfQx3m6EE6gK--cPfPt5rO76d_bTjYovX4fbDafSghmeTqdbNUq9X87pHBXAn2A0ssdJY</recordid><startdate>20050118</startdate><enddate>20050118</enddate><creator>Mack, J. J.</creator><creator>Viculis, L. M.</creator><creator>Ali, A.</creator><creator>Luoh, R.</creator><creator>Yang, G.</creator><creator>Hahn, H. T.</creator><creator>Ko, F. K.</creator><creator>Kaner, R. B.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050118</creationdate><title>Graphite Nanoplatelet Reinforcement of Electrospun Polyacrylonitrile Nanofibers</title><author>Mack, J. J. ; Viculis, L. M. ; Ali, A. ; Luoh, R. ; Yang, G. ; Hahn, H. T. ; Ko, F. K. ; Kaner, R. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3273-226dd0517e3e8d7cea4b6cee7b58755665c24303e0688af4b8a1f4561e7c8fd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Electrospinning</topic><topic>Graphite</topic><topic>Nanocomposites</topic><topic>Nanofibers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mack, J. J.</creatorcontrib><creatorcontrib>Viculis, L. M.</creatorcontrib><creatorcontrib>Ali, A.</creatorcontrib><creatorcontrib>Luoh, R.</creatorcontrib><creatorcontrib>Yang, G.</creatorcontrib><creatorcontrib>Hahn, H. T.</creatorcontrib><creatorcontrib>Ko, F. K.</creatorcontrib><creatorcontrib>Kaner, R. B.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mack, J. J.</au><au>Viculis, L. M.</au><au>Ali, A.</au><au>Luoh, R.</au><au>Yang, G.</au><au>Hahn, H. T.</au><au>Ko, F. K.</au><au>Kaner, R. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphite Nanoplatelet Reinforcement of Electrospun Polyacrylonitrile Nanofibers</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv. Mater</addtitle><date>2005-01-18</date><risdate>2005</risdate><volume>17</volume><issue>1</issue><spage>77</spage><epage>80</epage><pages>77-80</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Thin graphite nanoplatelets synthesized by an intercalation/exfoliation process are incorporated into a polymer fiber matrix by an electrospinning process, creating ultrafine nanocomposite fibrils (see Figure). Uniform nanofibers of average diameter 300 nm show a modest increase in thermal stability with increasing weight percentage of graphite nanoplatelets. The mechanical properties of the fibrils are examined, and the normalized Young's modulus is found to increase two‐fold upon addition of 4 wt.‐% graphite nanoplatelets.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adma.200400133</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2005-01, Vol.17 (1), p.77-80
issn 0935-9648
1521-4095
language eng
recordid cdi_crossref_primary_10_1002_adma_200400133
source Wiley Online Library Journals Frontfile Complete
subjects Electrospinning
Graphite
Nanocomposites
Nanofibers
title Graphite Nanoplatelet Reinforcement of Electrospun Polyacrylonitrile Nanofibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A36%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphite%20Nanoplatelet%20Reinforcement%20of%20Electrospun%20Polyacrylonitrile%20Nanofibers&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Mack,%20J.%E2%80%89J.&rft.date=2005-01-18&rft.volume=17&rft.issue=1&rft.spage=77&rft.epage=80&rft.pages=77-80&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.200400133&rft_dat=%3Cistex_cross%3Eark_67375_WNG_JJDKQ30D_6%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true