Synergy Effect of Acid Radical Anchors and Active Sites Protection in Co‐Based Spinel Catalyst for Efficient Amine Solution Regeneration During CO 2 Capture
Solid acid catalysts (SACs) have attracted significant attention for their role in enhancing the carbon capture desorption process, primarily due to their active acid sites. By employing a synergistic strategy involving acid anchoring and structural design, both the catalytic activity and durability...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2025-01 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Advanced functional materials |
container_volume | |
creator | Zhong, Xinling Kong, Weixin Yang, Kexuan Song, Tao Dong, Zhiyuan Liang, Lehang Zhang, Shihan Li, Wei Li, Sujing |
description | Solid acid catalysts (SACs) have attracted significant attention for their role in enhancing the carbon capture desorption process, primarily due to their active acid sites. By employing a synergistic strategy involving acid anchoring and structural design, both the catalytic activity and durability of the catalyst throughout the desorption process are optimized. The TiO 2 shell layer in the Mn 2 CoO 4 @TiO 2 /SO 4 2− (MC@TiO 2 /S) catalyst effectively inhibits the leaching of active species into the solution, thereby enabling sustained high activity over ten cycles of absorption–desorption testing. The anchoring of protonated groups (SO 4 2− ) facilitates a novel pathway for proton transfer in solution via proton‐coupled electron transfer (PCET) effect, significantly reducing activation energy for this step and enhancing desorption reaction kinetics. Consequently, CO 2 regeneration capacity and regeneration rate increase by 103% and 111%, respectively, while energy consumption during regeneration decreases by ≈44%. Additionally, the environmental performance of the catalyst is evaluated using life cycle assessment (LCA), highlighting its sustainable potential for future scale‐up applications. This study presents a viable strategy for employing metal oxide solid acid materials to facilitate efficient and low‐energy solvent regeneration in carbon capture processes. |
doi_str_mv | 10.1002/adfm.202422336 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202422336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202422336</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_adfm_2024223363</originalsourceid><addsrcrecordid>eNqVkEFOwzAQRS0EEoWyZT0XaLCdKmUbQhE7qoZFd5HljMOgxI5sByk7jsAJOBwnIalQ96zmj77ejPQYuxU8EZzLO1WbLpFcrqVM0-yMLUQmslXK5f35KYvDJbsK4Z1zsdmk6wX7LkeLvhlhawzqCM5ArqmGvapJqxZyq9-cD6BsPRWRPhBKihhg512cAHIWyELhfj6_HlTAGsqeLLZQqKjaMUQwzs_HSRPaCHk3tVC6djiie2xw-q-Oy-PgyTZQvICc8D4OHpfswqg24M3fvGbJ0_a1eF5p70LwaKreU6f8WAlezRaq2UJ1spD-G_gFut5nuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synergy Effect of Acid Radical Anchors and Active Sites Protection in Co‐Based Spinel Catalyst for Efficient Amine Solution Regeneration During CO 2 Capture</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhong, Xinling ; Kong, Weixin ; Yang, Kexuan ; Song, Tao ; Dong, Zhiyuan ; Liang, Lehang ; Zhang, Shihan ; Li, Wei ; Li, Sujing</creator><creatorcontrib>Zhong, Xinling ; Kong, Weixin ; Yang, Kexuan ; Song, Tao ; Dong, Zhiyuan ; Liang, Lehang ; Zhang, Shihan ; Li, Wei ; Li, Sujing</creatorcontrib><description>Solid acid catalysts (SACs) have attracted significant attention for their role in enhancing the carbon capture desorption process, primarily due to their active acid sites. By employing a synergistic strategy involving acid anchoring and structural design, both the catalytic activity and durability of the catalyst throughout the desorption process are optimized. The TiO 2 shell layer in the Mn 2 CoO 4 @TiO 2 /SO 4 2− (MC@TiO 2 /S) catalyst effectively inhibits the leaching of active species into the solution, thereby enabling sustained high activity over ten cycles of absorption–desorption testing. The anchoring of protonated groups (SO 4 2− ) facilitates a novel pathway for proton transfer in solution via proton‐coupled electron transfer (PCET) effect, significantly reducing activation energy for this step and enhancing desorption reaction kinetics. Consequently, CO 2 regeneration capacity and regeneration rate increase by 103% and 111%, respectively, while energy consumption during regeneration decreases by ≈44%. Additionally, the environmental performance of the catalyst is evaluated using life cycle assessment (LCA), highlighting its sustainable potential for future scale‐up applications. This study presents a viable strategy for employing metal oxide solid acid materials to facilitate efficient and low‐energy solvent regeneration in carbon capture processes.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202422336</identifier><language>eng</language><ispartof>Advanced functional materials, 2025-01</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_adfm_2024223363</cites><orcidid>0000-0002-7757-3881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhong, Xinling</creatorcontrib><creatorcontrib>Kong, Weixin</creatorcontrib><creatorcontrib>Yang, Kexuan</creatorcontrib><creatorcontrib>Song, Tao</creatorcontrib><creatorcontrib>Dong, Zhiyuan</creatorcontrib><creatorcontrib>Liang, Lehang</creatorcontrib><creatorcontrib>Zhang, Shihan</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Li, Sujing</creatorcontrib><title>Synergy Effect of Acid Radical Anchors and Active Sites Protection in Co‐Based Spinel Catalyst for Efficient Amine Solution Regeneration During CO 2 Capture</title><title>Advanced functional materials</title><description>Solid acid catalysts (SACs) have attracted significant attention for their role in enhancing the carbon capture desorption process, primarily due to their active acid sites. By employing a synergistic strategy involving acid anchoring and structural design, both the catalytic activity and durability of the catalyst throughout the desorption process are optimized. The TiO 2 shell layer in the Mn 2 CoO 4 @TiO 2 /SO 4 2− (MC@TiO 2 /S) catalyst effectively inhibits the leaching of active species into the solution, thereby enabling sustained high activity over ten cycles of absorption–desorption testing. The anchoring of protonated groups (SO 4 2− ) facilitates a novel pathway for proton transfer in solution via proton‐coupled electron transfer (PCET) effect, significantly reducing activation energy for this step and enhancing desorption reaction kinetics. Consequently, CO 2 regeneration capacity and regeneration rate increase by 103% and 111%, respectively, while energy consumption during regeneration decreases by ≈44%. Additionally, the environmental performance of the catalyst is evaluated using life cycle assessment (LCA), highlighting its sustainable potential for future scale‐up applications. This study presents a viable strategy for employing metal oxide solid acid materials to facilitate efficient and low‐energy solvent regeneration in carbon capture processes.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqVkEFOwzAQRS0EEoWyZT0XaLCdKmUbQhE7qoZFd5HljMOgxI5sByk7jsAJOBwnIalQ96zmj77ejPQYuxU8EZzLO1WbLpFcrqVM0-yMLUQmslXK5f35KYvDJbsK4Z1zsdmk6wX7LkeLvhlhawzqCM5ArqmGvapJqxZyq9-cD6BsPRWRPhBKihhg512cAHIWyELhfj6_HlTAGsqeLLZQqKjaMUQwzs_HSRPaCHk3tVC6djiie2xw-q-Oy-PgyTZQvICc8D4OHpfswqg24M3fvGbJ0_a1eF5p70LwaKreU6f8WAlezRaq2UJ1spD-G_gFut5nuA</recordid><startdate>20250107</startdate><enddate>20250107</enddate><creator>Zhong, Xinling</creator><creator>Kong, Weixin</creator><creator>Yang, Kexuan</creator><creator>Song, Tao</creator><creator>Dong, Zhiyuan</creator><creator>Liang, Lehang</creator><creator>Zhang, Shihan</creator><creator>Li, Wei</creator><creator>Li, Sujing</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7757-3881</orcidid></search><sort><creationdate>20250107</creationdate><title>Synergy Effect of Acid Radical Anchors and Active Sites Protection in Co‐Based Spinel Catalyst for Efficient Amine Solution Regeneration During CO 2 Capture</title><author>Zhong, Xinling ; Kong, Weixin ; Yang, Kexuan ; Song, Tao ; Dong, Zhiyuan ; Liang, Lehang ; Zhang, Shihan ; Li, Wei ; Li, Sujing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_adfm_2024223363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Xinling</creatorcontrib><creatorcontrib>Kong, Weixin</creatorcontrib><creatorcontrib>Yang, Kexuan</creatorcontrib><creatorcontrib>Song, Tao</creatorcontrib><creatorcontrib>Dong, Zhiyuan</creatorcontrib><creatorcontrib>Liang, Lehang</creatorcontrib><creatorcontrib>Zhang, Shihan</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Li, Sujing</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Xinling</au><au>Kong, Weixin</au><au>Yang, Kexuan</au><au>Song, Tao</au><au>Dong, Zhiyuan</au><au>Liang, Lehang</au><au>Zhang, Shihan</au><au>Li, Wei</au><au>Li, Sujing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergy Effect of Acid Radical Anchors and Active Sites Protection in Co‐Based Spinel Catalyst for Efficient Amine Solution Regeneration During CO 2 Capture</atitle><jtitle>Advanced functional materials</jtitle><date>2025-01-07</date><risdate>2025</risdate><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Solid acid catalysts (SACs) have attracted significant attention for their role in enhancing the carbon capture desorption process, primarily due to their active acid sites. By employing a synergistic strategy involving acid anchoring and structural design, both the catalytic activity and durability of the catalyst throughout the desorption process are optimized. The TiO 2 shell layer in the Mn 2 CoO 4 @TiO 2 /SO 4 2− (MC@TiO 2 /S) catalyst effectively inhibits the leaching of active species into the solution, thereby enabling sustained high activity over ten cycles of absorption–desorption testing. The anchoring of protonated groups (SO 4 2− ) facilitates a novel pathway for proton transfer in solution via proton‐coupled electron transfer (PCET) effect, significantly reducing activation energy for this step and enhancing desorption reaction kinetics. Consequently, CO 2 regeneration capacity and regeneration rate increase by 103% and 111%, respectively, while energy consumption during regeneration decreases by ≈44%. Additionally, the environmental performance of the catalyst is evaluated using life cycle assessment (LCA), highlighting its sustainable potential for future scale‐up applications. This study presents a viable strategy for employing metal oxide solid acid materials to facilitate efficient and low‐energy solvent regeneration in carbon capture processes.</abstract><doi>10.1002/adfm.202422336</doi><orcidid>https://orcid.org/0000-0002-7757-3881</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2025-01 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_crossref_primary_10_1002_adfm_202422336 |
source | Wiley Online Library Journals Frontfile Complete |
title | Synergy Effect of Acid Radical Anchors and Active Sites Protection in Co‐Based Spinel Catalyst for Efficient Amine Solution Regeneration During CO 2 Capture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergy%20Effect%20of%20Acid%20Radical%20Anchors%20and%20Active%20Sites%20Protection%20in%20Co%E2%80%90Based%20Spinel%20Catalyst%20for%20Efficient%20Amine%20Solution%20Regeneration%20During%20CO%202%20Capture&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhong,%20Xinling&rft.date=2025-01-07&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202422336&rft_dat=%3Ccrossref%3E10_1002_adfm_202422336%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |