Synergy Effect of Acid Radical Anchors and Active Sites Protection in Co‐Based Spinel Catalyst for Efficient Amine Solution Regeneration During CO 2 Capture

Solid acid catalysts (SACs) have attracted significant attention for their role in enhancing the carbon capture desorption process, primarily due to their active acid sites. By employing a synergistic strategy involving acid anchoring and structural design, both the catalytic activity and durability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2025-01
Hauptverfasser: Zhong, Xinling, Kong, Weixin, Yang, Kexuan, Song, Tao, Dong, Zhiyuan, Liang, Lehang, Zhang, Shihan, Li, Wei, Li, Sujing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Advanced functional materials
container_volume
creator Zhong, Xinling
Kong, Weixin
Yang, Kexuan
Song, Tao
Dong, Zhiyuan
Liang, Lehang
Zhang, Shihan
Li, Wei
Li, Sujing
description Solid acid catalysts (SACs) have attracted significant attention for their role in enhancing the carbon capture desorption process, primarily due to their active acid sites. By employing a synergistic strategy involving acid anchoring and structural design, both the catalytic activity and durability of the catalyst throughout the desorption process are optimized. The TiO 2 shell layer in the Mn 2 CoO 4 @TiO 2 /SO 4 2− (MC@TiO 2 /S) catalyst effectively inhibits the leaching of active species into the solution, thereby enabling sustained high activity over ten cycles of absorption–desorption testing. The anchoring of protonated groups (SO 4 2− ) facilitates a novel pathway for proton transfer in solution via proton‐coupled electron transfer (PCET) effect, significantly reducing activation energy for this step and enhancing desorption reaction kinetics. Consequently, CO 2 regeneration capacity and regeneration rate increase by 103% and 111%, respectively, while energy consumption during regeneration decreases by ≈44%. Additionally, the environmental performance of the catalyst is evaluated using life cycle assessment (LCA), highlighting its sustainable potential for future scale‐up applications. This study presents a viable strategy for employing metal oxide solid acid materials to facilitate efficient and low‐energy solvent regeneration in carbon capture processes.
doi_str_mv 10.1002/adfm.202422336
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202422336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202422336</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_adfm_2024223363</originalsourceid><addsrcrecordid>eNqVkEFOwzAQRS0EEoWyZT0XaLCdKmUbQhE7qoZFd5HljMOgxI5sByk7jsAJOBwnIalQ96zmj77ejPQYuxU8EZzLO1WbLpFcrqVM0-yMLUQmslXK5f35KYvDJbsK4Z1zsdmk6wX7LkeLvhlhawzqCM5ArqmGvapJqxZyq9-cD6BsPRWRPhBKihhg512cAHIWyELhfj6_HlTAGsqeLLZQqKjaMUQwzs_HSRPaCHk3tVC6djiie2xw-q-Oy-PgyTZQvICc8D4OHpfswqg24M3fvGbJ0_a1eF5p70LwaKreU6f8WAlezRaq2UJ1spD-G_gFut5nuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synergy Effect of Acid Radical Anchors and Active Sites Protection in Co‐Based Spinel Catalyst for Efficient Amine Solution Regeneration During CO 2 Capture</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhong, Xinling ; Kong, Weixin ; Yang, Kexuan ; Song, Tao ; Dong, Zhiyuan ; Liang, Lehang ; Zhang, Shihan ; Li, Wei ; Li, Sujing</creator><creatorcontrib>Zhong, Xinling ; Kong, Weixin ; Yang, Kexuan ; Song, Tao ; Dong, Zhiyuan ; Liang, Lehang ; Zhang, Shihan ; Li, Wei ; Li, Sujing</creatorcontrib><description>Solid acid catalysts (SACs) have attracted significant attention for their role in enhancing the carbon capture desorption process, primarily due to their active acid sites. By employing a synergistic strategy involving acid anchoring and structural design, both the catalytic activity and durability of the catalyst throughout the desorption process are optimized. The TiO 2 shell layer in the Mn 2 CoO 4 @TiO 2 /SO 4 2− (MC@TiO 2 /S) catalyst effectively inhibits the leaching of active species into the solution, thereby enabling sustained high activity over ten cycles of absorption–desorption testing. The anchoring of protonated groups (SO 4 2− ) facilitates a novel pathway for proton transfer in solution via proton‐coupled electron transfer (PCET) effect, significantly reducing activation energy for this step and enhancing desorption reaction kinetics. Consequently, CO 2 regeneration capacity and regeneration rate increase by 103% and 111%, respectively, while energy consumption during regeneration decreases by ≈44%. Additionally, the environmental performance of the catalyst is evaluated using life cycle assessment (LCA), highlighting its sustainable potential for future scale‐up applications. This study presents a viable strategy for employing metal oxide solid acid materials to facilitate efficient and low‐energy solvent regeneration in carbon capture processes.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202422336</identifier><language>eng</language><ispartof>Advanced functional materials, 2025-01</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_adfm_2024223363</cites><orcidid>0000-0002-7757-3881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhong, Xinling</creatorcontrib><creatorcontrib>Kong, Weixin</creatorcontrib><creatorcontrib>Yang, Kexuan</creatorcontrib><creatorcontrib>Song, Tao</creatorcontrib><creatorcontrib>Dong, Zhiyuan</creatorcontrib><creatorcontrib>Liang, Lehang</creatorcontrib><creatorcontrib>Zhang, Shihan</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Li, Sujing</creatorcontrib><title>Synergy Effect of Acid Radical Anchors and Active Sites Protection in Co‐Based Spinel Catalyst for Efficient Amine Solution Regeneration During CO 2 Capture</title><title>Advanced functional materials</title><description>Solid acid catalysts (SACs) have attracted significant attention for their role in enhancing the carbon capture desorption process, primarily due to their active acid sites. By employing a synergistic strategy involving acid anchoring and structural design, both the catalytic activity and durability of the catalyst throughout the desorption process are optimized. The TiO 2 shell layer in the Mn 2 CoO 4 @TiO 2 /SO 4 2− (MC@TiO 2 /S) catalyst effectively inhibits the leaching of active species into the solution, thereby enabling sustained high activity over ten cycles of absorption–desorption testing. The anchoring of protonated groups (SO 4 2− ) facilitates a novel pathway for proton transfer in solution via proton‐coupled electron transfer (PCET) effect, significantly reducing activation energy for this step and enhancing desorption reaction kinetics. Consequently, CO 2 regeneration capacity and regeneration rate increase by 103% and 111%, respectively, while energy consumption during regeneration decreases by ≈44%. Additionally, the environmental performance of the catalyst is evaluated using life cycle assessment (LCA), highlighting its sustainable potential for future scale‐up applications. This study presents a viable strategy for employing metal oxide solid acid materials to facilitate efficient and low‐energy solvent regeneration in carbon capture processes.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqVkEFOwzAQRS0EEoWyZT0XaLCdKmUbQhE7qoZFd5HljMOgxI5sByk7jsAJOBwnIalQ96zmj77ejPQYuxU8EZzLO1WbLpFcrqVM0-yMLUQmslXK5f35KYvDJbsK4Z1zsdmk6wX7LkeLvhlhawzqCM5ArqmGvapJqxZyq9-cD6BsPRWRPhBKihhg512cAHIWyELhfj6_HlTAGsqeLLZQqKjaMUQwzs_HSRPaCHk3tVC6djiie2xw-q-Oy-PgyTZQvICc8D4OHpfswqg24M3fvGbJ0_a1eF5p70LwaKreU6f8WAlezRaq2UJ1spD-G_gFut5nuA</recordid><startdate>20250107</startdate><enddate>20250107</enddate><creator>Zhong, Xinling</creator><creator>Kong, Weixin</creator><creator>Yang, Kexuan</creator><creator>Song, Tao</creator><creator>Dong, Zhiyuan</creator><creator>Liang, Lehang</creator><creator>Zhang, Shihan</creator><creator>Li, Wei</creator><creator>Li, Sujing</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7757-3881</orcidid></search><sort><creationdate>20250107</creationdate><title>Synergy Effect of Acid Radical Anchors and Active Sites Protection in Co‐Based Spinel Catalyst for Efficient Amine Solution Regeneration During CO 2 Capture</title><author>Zhong, Xinling ; Kong, Weixin ; Yang, Kexuan ; Song, Tao ; Dong, Zhiyuan ; Liang, Lehang ; Zhang, Shihan ; Li, Wei ; Li, Sujing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_adfm_2024223363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Xinling</creatorcontrib><creatorcontrib>Kong, Weixin</creatorcontrib><creatorcontrib>Yang, Kexuan</creatorcontrib><creatorcontrib>Song, Tao</creatorcontrib><creatorcontrib>Dong, Zhiyuan</creatorcontrib><creatorcontrib>Liang, Lehang</creatorcontrib><creatorcontrib>Zhang, Shihan</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Li, Sujing</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Xinling</au><au>Kong, Weixin</au><au>Yang, Kexuan</au><au>Song, Tao</au><au>Dong, Zhiyuan</au><au>Liang, Lehang</au><au>Zhang, Shihan</au><au>Li, Wei</au><au>Li, Sujing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergy Effect of Acid Radical Anchors and Active Sites Protection in Co‐Based Spinel Catalyst for Efficient Amine Solution Regeneration During CO 2 Capture</atitle><jtitle>Advanced functional materials</jtitle><date>2025-01-07</date><risdate>2025</risdate><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Solid acid catalysts (SACs) have attracted significant attention for their role in enhancing the carbon capture desorption process, primarily due to their active acid sites. By employing a synergistic strategy involving acid anchoring and structural design, both the catalytic activity and durability of the catalyst throughout the desorption process are optimized. The TiO 2 shell layer in the Mn 2 CoO 4 @TiO 2 /SO 4 2− (MC@TiO 2 /S) catalyst effectively inhibits the leaching of active species into the solution, thereby enabling sustained high activity over ten cycles of absorption–desorption testing. The anchoring of protonated groups (SO 4 2− ) facilitates a novel pathway for proton transfer in solution via proton‐coupled electron transfer (PCET) effect, significantly reducing activation energy for this step and enhancing desorption reaction kinetics. Consequently, CO 2 regeneration capacity and regeneration rate increase by 103% and 111%, respectively, while energy consumption during regeneration decreases by ≈44%. Additionally, the environmental performance of the catalyst is evaluated using life cycle assessment (LCA), highlighting its sustainable potential for future scale‐up applications. This study presents a viable strategy for employing metal oxide solid acid materials to facilitate efficient and low‐energy solvent regeneration in carbon capture processes.</abstract><doi>10.1002/adfm.202422336</doi><orcidid>https://orcid.org/0000-0002-7757-3881</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2025-01
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_202422336
source Wiley Online Library Journals Frontfile Complete
title Synergy Effect of Acid Radical Anchors and Active Sites Protection in Co‐Based Spinel Catalyst for Efficient Amine Solution Regeneration During CO 2 Capture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergy%20Effect%20of%20Acid%20Radical%20Anchors%20and%20Active%20Sites%20Protection%20in%20Co%E2%80%90Based%20Spinel%20Catalyst%20for%20Efficient%20Amine%20Solution%20Regeneration%20During%20CO%202%20Capture&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhong,%20Xinling&rft.date=2025-01-07&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202422336&rft_dat=%3Ccrossref%3E10_1002_adfm_202422336%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true