Synergy Effect of Acid Radical Anchors and Active Sites Protection in Co‐Based Spinel Catalyst for Efficient Amine Solution Regeneration During CO 2 Capture

Solid acid catalysts (SACs) have attracted significant attention for their role in enhancing the carbon capture desorption process, primarily due to their active acid sites. By employing a synergistic strategy involving acid anchoring and structural design, both the catalytic activity and durability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2025-01
Hauptverfasser: Zhong, Xinling, Kong, Weixin, Yang, Kexuan, Song, Tao, Dong, Zhiyuan, Liang, Lehang, Zhang, Shihan, Li, Wei, Li, Sujing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solid acid catalysts (SACs) have attracted significant attention for their role in enhancing the carbon capture desorption process, primarily due to their active acid sites. By employing a synergistic strategy involving acid anchoring and structural design, both the catalytic activity and durability of the catalyst throughout the desorption process are optimized. The TiO 2 shell layer in the Mn 2 CoO 4 @TiO 2 /SO 4 2− (MC@TiO 2 /S) catalyst effectively inhibits the leaching of active species into the solution, thereby enabling sustained high activity over ten cycles of absorption–desorption testing. The anchoring of protonated groups (SO 4 2− ) facilitates a novel pathway for proton transfer in solution via proton‐coupled electron transfer (PCET) effect, significantly reducing activation energy for this step and enhancing desorption reaction kinetics. Consequently, CO 2 regeneration capacity and regeneration rate increase by 103% and 111%, respectively, while energy consumption during regeneration decreases by ≈44%. Additionally, the environmental performance of the catalyst is evaluated using life cycle assessment (LCA), highlighting its sustainable potential for future scale‐up applications. This study presents a viable strategy for employing metal oxide solid acid materials to facilitate efficient and low‐energy solvent regeneration in carbon capture processes.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202422336