Design Strategies, Characterization Mechanisms, and Applications of MOFs in Polymer Composite Electrolytes for Solid‐State Lithium Metal Batteries

Solid composite electrolytes (SCEs) composed of functional fillers and solid polymer electrolytes (SPEs) can overcome some shortcomings of single‐phase and combine some advantages of each component, and are considered as high‐performance solid‐state electrolytes (SSEs) candidates for assembling soli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2025-01
Hauptverfasser: He, Honggui, Deng, Nanping, Wang, Xiaoyin, Gao, Lu, Tang, Chuqing, Wu, Enjie, Ren, Junguang, Yang, Xianbo, Feng, Nini, Gao, Dezhou, Zhuang, Xupin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Advanced functional materials
container_volume
creator He, Honggui
Deng, Nanping
Wang, Xiaoyin
Gao, Lu
Tang, Chuqing
Wu, Enjie
Ren, Junguang
Yang, Xianbo
Feng, Nini
Gao, Dezhou
Zhuang, Xupin
description Solid composite electrolytes (SCEs) composed of functional fillers and solid polymer electrolytes (SPEs) can overcome some shortcomings of single‐phase and combine some advantages of each component, and are considered as high‐performance solid‐state electrolytes (SSEs) candidates for assembling solid‐state lithium metal batteries (SSLMBs) with high safety and high energy density. In recent years, due to high designability of metal–organic frameworks (MOFs), MOFs/polymer composite electrolytes (MPCEs) have become a highly promising novel type of SCEs. Based on the above content, this article first describes the composition and mechanism of action of MPCEs, followed by a discussion on typical fabrication methods for MPCEs. In addition, the mechanisms of unmodified neat MOFs in improving performance for SSEs and enhancing interface stability are presented in detail, with a focus on the design strategies of MOFs and their applications in MPCEs, including dimensional design, ligand design, IL@MOFs design, and hybrid design. Finally, a thorough analysis is conducted on the current challenges faced by MPCEs, and corresponding future development directions are proposed. This review presents a comprehensive, systematic, and easily understandable analysis of the application and mechanism of action of different MOFs designs in MPCEs, providing a new perspective for researchers to study high‐performance SSEs.
doi_str_mv 10.1002/adfm.202421670
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202421670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202421670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c124t-708e791bfea6708b5d7f10f762a0f8ec3a94b39225d7bb3c6aac828fa94e78ed3</originalsourceid><addsrcrecordid>eNo9kEFOwzAQRS0EEqWwZe0DkGI7IU6XJbSA1KpIBYldNHHGrVESR7ZZtCuOwIITchJSQF3N6D9pvuYRcsnZiDMmrqHSzUgwkQieSnZEBjzlaRQzkR0fdv56Ss68f2OMSxknA_J1h96sW7oKDgKuDformm_AgQrozA6CsS1doNpAa3zTQ2grOum62qhf5qnVdLGceWpa-mTrbYOO5rbprDcB6bRGFVwfB_RUW0dXtjbV98fnKvR1dG7Cxrw3fUGAmt5C2JeiPycnGmqPF_9zSF5m0-f8IZov7x_zyTxSXCQhkixDOealRugfzsqbSmrOtEwFMJ2himGclPFYiB6UZaxSAJWJTPcxygyreEhGf3eVs9471EXnTANuW3BW7J0We6fFwWn8A-cWbyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design Strategies, Characterization Mechanisms, and Applications of MOFs in Polymer Composite Electrolytes for Solid‐State Lithium Metal Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>He, Honggui ; Deng, Nanping ; Wang, Xiaoyin ; Gao, Lu ; Tang, Chuqing ; Wu, Enjie ; Ren, Junguang ; Yang, Xianbo ; Feng, Nini ; Gao, Dezhou ; Zhuang, Xupin</creator><creatorcontrib>He, Honggui ; Deng, Nanping ; Wang, Xiaoyin ; Gao, Lu ; Tang, Chuqing ; Wu, Enjie ; Ren, Junguang ; Yang, Xianbo ; Feng, Nini ; Gao, Dezhou ; Zhuang, Xupin</creatorcontrib><description>Solid composite electrolytes (SCEs) composed of functional fillers and solid polymer electrolytes (SPEs) can overcome some shortcomings of single‐phase and combine some advantages of each component, and are considered as high‐performance solid‐state electrolytes (SSEs) candidates for assembling solid‐state lithium metal batteries (SSLMBs) with high safety and high energy density. In recent years, due to high designability of metal–organic frameworks (MOFs), MOFs/polymer composite electrolytes (MPCEs) have become a highly promising novel type of SCEs. Based on the above content, this article first describes the composition and mechanism of action of MPCEs, followed by a discussion on typical fabrication methods for MPCEs. In addition, the mechanisms of unmodified neat MOFs in improving performance for SSEs and enhancing interface stability are presented in detail, with a focus on the design strategies of MOFs and their applications in MPCEs, including dimensional design, ligand design, IL@MOFs design, and hybrid design. Finally, a thorough analysis is conducted on the current challenges faced by MPCEs, and corresponding future development directions are proposed. This review presents a comprehensive, systematic, and easily understandable analysis of the application and mechanism of action of different MOFs designs in MPCEs, providing a new perspective for researchers to study high‐performance SSEs.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202421670</identifier><language>eng</language><ispartof>Advanced functional materials, 2025-01</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c124t-708e791bfea6708b5d7f10f762a0f8ec3a94b39225d7bb3c6aac828fa94e78ed3</cites><orcidid>0000-0001-9536-2626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>He, Honggui</creatorcontrib><creatorcontrib>Deng, Nanping</creatorcontrib><creatorcontrib>Wang, Xiaoyin</creatorcontrib><creatorcontrib>Gao, Lu</creatorcontrib><creatorcontrib>Tang, Chuqing</creatorcontrib><creatorcontrib>Wu, Enjie</creatorcontrib><creatorcontrib>Ren, Junguang</creatorcontrib><creatorcontrib>Yang, Xianbo</creatorcontrib><creatorcontrib>Feng, Nini</creatorcontrib><creatorcontrib>Gao, Dezhou</creatorcontrib><creatorcontrib>Zhuang, Xupin</creatorcontrib><title>Design Strategies, Characterization Mechanisms, and Applications of MOFs in Polymer Composite Electrolytes for Solid‐State Lithium Metal Batteries</title><title>Advanced functional materials</title><description>Solid composite electrolytes (SCEs) composed of functional fillers and solid polymer electrolytes (SPEs) can overcome some shortcomings of single‐phase and combine some advantages of each component, and are considered as high‐performance solid‐state electrolytes (SSEs) candidates for assembling solid‐state lithium metal batteries (SSLMBs) with high safety and high energy density. In recent years, due to high designability of metal–organic frameworks (MOFs), MOFs/polymer composite electrolytes (MPCEs) have become a highly promising novel type of SCEs. Based on the above content, this article first describes the composition and mechanism of action of MPCEs, followed by a discussion on typical fabrication methods for MPCEs. In addition, the mechanisms of unmodified neat MOFs in improving performance for SSEs and enhancing interface stability are presented in detail, with a focus on the design strategies of MOFs and their applications in MPCEs, including dimensional design, ligand design, IL@MOFs design, and hybrid design. Finally, a thorough analysis is conducted on the current challenges faced by MPCEs, and corresponding future development directions are proposed. This review presents a comprehensive, systematic, and easily understandable analysis of the application and mechanism of action of different MOFs designs in MPCEs, providing a new perspective for researchers to study high‐performance SSEs.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo9kEFOwzAQRS0EEqWwZe0DkGI7IU6XJbSA1KpIBYldNHHGrVESR7ZZtCuOwIITchJSQF3N6D9pvuYRcsnZiDMmrqHSzUgwkQieSnZEBjzlaRQzkR0fdv56Ss68f2OMSxknA_J1h96sW7oKDgKuDformm_AgQrozA6CsS1doNpAa3zTQ2grOum62qhf5qnVdLGceWpa-mTrbYOO5rbprDcB6bRGFVwfB_RUW0dXtjbV98fnKvR1dG7Cxrw3fUGAmt5C2JeiPycnGmqPF_9zSF5m0-f8IZov7x_zyTxSXCQhkixDOealRugfzsqbSmrOtEwFMJ2himGclPFYiB6UZaxSAJWJTPcxygyreEhGf3eVs9471EXnTANuW3BW7J0We6fFwWn8A-cWbyk</recordid><startdate>20250116</startdate><enddate>20250116</enddate><creator>He, Honggui</creator><creator>Deng, Nanping</creator><creator>Wang, Xiaoyin</creator><creator>Gao, Lu</creator><creator>Tang, Chuqing</creator><creator>Wu, Enjie</creator><creator>Ren, Junguang</creator><creator>Yang, Xianbo</creator><creator>Feng, Nini</creator><creator>Gao, Dezhou</creator><creator>Zhuang, Xupin</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9536-2626</orcidid></search><sort><creationdate>20250116</creationdate><title>Design Strategies, Characterization Mechanisms, and Applications of MOFs in Polymer Composite Electrolytes for Solid‐State Lithium Metal Batteries</title><author>He, Honggui ; Deng, Nanping ; Wang, Xiaoyin ; Gao, Lu ; Tang, Chuqing ; Wu, Enjie ; Ren, Junguang ; Yang, Xianbo ; Feng, Nini ; Gao, Dezhou ; Zhuang, Xupin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c124t-708e791bfea6708b5d7f10f762a0f8ec3a94b39225d7bb3c6aac828fa94e78ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Honggui</creatorcontrib><creatorcontrib>Deng, Nanping</creatorcontrib><creatorcontrib>Wang, Xiaoyin</creatorcontrib><creatorcontrib>Gao, Lu</creatorcontrib><creatorcontrib>Tang, Chuqing</creatorcontrib><creatorcontrib>Wu, Enjie</creatorcontrib><creatorcontrib>Ren, Junguang</creatorcontrib><creatorcontrib>Yang, Xianbo</creatorcontrib><creatorcontrib>Feng, Nini</creatorcontrib><creatorcontrib>Gao, Dezhou</creatorcontrib><creatorcontrib>Zhuang, Xupin</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Honggui</au><au>Deng, Nanping</au><au>Wang, Xiaoyin</au><au>Gao, Lu</au><au>Tang, Chuqing</au><au>Wu, Enjie</au><au>Ren, Junguang</au><au>Yang, Xianbo</au><au>Feng, Nini</au><au>Gao, Dezhou</au><au>Zhuang, Xupin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Strategies, Characterization Mechanisms, and Applications of MOFs in Polymer Composite Electrolytes for Solid‐State Lithium Metal Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2025-01-16</date><risdate>2025</risdate><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Solid composite electrolytes (SCEs) composed of functional fillers and solid polymer electrolytes (SPEs) can overcome some shortcomings of single‐phase and combine some advantages of each component, and are considered as high‐performance solid‐state electrolytes (SSEs) candidates for assembling solid‐state lithium metal batteries (SSLMBs) with high safety and high energy density. In recent years, due to high designability of metal–organic frameworks (MOFs), MOFs/polymer composite electrolytes (MPCEs) have become a highly promising novel type of SCEs. Based on the above content, this article first describes the composition and mechanism of action of MPCEs, followed by a discussion on typical fabrication methods for MPCEs. In addition, the mechanisms of unmodified neat MOFs in improving performance for SSEs and enhancing interface stability are presented in detail, with a focus on the design strategies of MOFs and their applications in MPCEs, including dimensional design, ligand design, IL@MOFs design, and hybrid design. Finally, a thorough analysis is conducted on the current challenges faced by MPCEs, and corresponding future development directions are proposed. This review presents a comprehensive, systematic, and easily understandable analysis of the application and mechanism of action of different MOFs designs in MPCEs, providing a new perspective for researchers to study high‐performance SSEs.</abstract><doi>10.1002/adfm.202421670</doi><orcidid>https://orcid.org/0000-0001-9536-2626</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2025-01
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_202421670
source Wiley Online Library Journals Frontfile Complete
title Design Strategies, Characterization Mechanisms, and Applications of MOFs in Polymer Composite Electrolytes for Solid‐State Lithium Metal Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A57%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Strategies,%20Characterization%20Mechanisms,%20and%20Applications%20of%20MOFs%20in%20Polymer%20Composite%20Electrolytes%20for%20Solid%E2%80%90State%20Lithium%20Metal%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=He,%20Honggui&rft.date=2025-01-16&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202421670&rft_dat=%3Ccrossref%3E10_1002_adfm_202421670%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true