Phase‐Transfer Catalyst for Lithium‐Oxygen Batteries Based on Bidirectional Coordination Catalysis: 2‐Aminopyridine

Li‐O 2 batteries are considered promising candidates for next generation high energy storage systems due to their exceptionally theoretical energy density. However, the accumulation of insulating discharge product Li 2 O 2 leads to severe cathode passivation, reduced conductivity, and hindered charg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2025-01
Hauptverfasser: Huang, Mengyao, Wang, Nan, Xie, Mengran, Fu, Yaning, Li, Zhongjun, Lu, Youcai, Liu, Qingchao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Advanced functional materials
container_volume
creator Huang, Mengyao
Wang, Nan
Xie, Mengran
Fu, Yaning
Li, Zhongjun
Lu, Youcai
Liu, Qingchao
description Li‐O 2 batteries are considered promising candidates for next generation high energy storage systems due to their exceptionally theoretical energy density. However, the accumulation of insulating discharge product Li 2 O 2 leads to severe cathode passivation, reduced conductivity, and hindered charge transfer, which seriously compromise the battery performance. This work proposes a novel phase‐transfer catalyst with bidirectional coordination functionality, 2‐aminopyridine (AP). The AP molecule contains a nucleophilic pyridine nitrogen and an electrophilic amino hydrogen, which can interact with Li + and reactive oxygen intermediates through electrostatic attraction and hydrogen bonding, respectively. This dual interaction facilitates the liquid‐phase deposition of Li 2 O 2 while enabling efficient product decomposition. The uneven electrostatic potential distribution within the AP molecule generates an internal electric field that stabilizes reduced oxygen species, shields against nucleophilic attacks, and suppresses Li + deposition at the anode tips, effectively preventing lithium dendrite growth. Therefore, Li‐O 2 batteries with AP exhibit an exceptionally high discharge capacity of 36419 mAh g −1 , a significantly reduced charge over‐potential of 0.29 V, and an extended cycle life exceeding 2256 h. Through functional molecular structure design, the bidirectional coordination catalytic effect demonstrated by AP molecules effectively regulates the migration and interaction of substances during reactions, significantly improves the electrochemical performance of Li‐O 2 batteries.
doi_str_mv 10.1002/adfm.202420678
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202420678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202420678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c124t-baa47e872b5a74d22e5161a0dcadcddb1bfb0138bde088d065a3813f416657253</originalsourceid><addsrcrecordid>eNo9kM9KxDAQh4MouK5ePecFWidJ2wRva_EfLKyHFbyVaZO4kW2zJBHszUfwGX0Su6h7mt_MMB_MR8glg5wB8CvUts858IJDJdURmbGKVZkAro4Pmb2ckrMY3wCYlKKYkfFpg9F8f36tAw7RmkBrTLgdY6LWB7p0aePe-2m_-hhfzUBvMCUTnIlTikZTP42cdsF0yfkBt7T2Pmg34L79Z7l4TfnEWPRu8LsxTAeDOScnFrfRXPzVOXm-u13XD9lydf9YL5ZZx3iRshaxkEZJ3pYoC825KadfEHSHutO6Za1tgQnVagNKaahKFIoJW7CqKiUvxZzkv9wu-BiDsc0uuB7D2DBo9uKavbjmIE78AIM8Zx8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phase‐Transfer Catalyst for Lithium‐Oxygen Batteries Based on Bidirectional Coordination Catalysis: 2‐Aminopyridine</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Mengyao ; Wang, Nan ; Xie, Mengran ; Fu, Yaning ; Li, Zhongjun ; Lu, Youcai ; Liu, Qingchao</creator><creatorcontrib>Huang, Mengyao ; Wang, Nan ; Xie, Mengran ; Fu, Yaning ; Li, Zhongjun ; Lu, Youcai ; Liu, Qingchao</creatorcontrib><description>Li‐O 2 batteries are considered promising candidates for next generation high energy storage systems due to their exceptionally theoretical energy density. However, the accumulation of insulating discharge product Li 2 O 2 leads to severe cathode passivation, reduced conductivity, and hindered charge transfer, which seriously compromise the battery performance. This work proposes a novel phase‐transfer catalyst with bidirectional coordination functionality, 2‐aminopyridine (AP). The AP molecule contains a nucleophilic pyridine nitrogen and an electrophilic amino hydrogen, which can interact with Li + and reactive oxygen intermediates through electrostatic attraction and hydrogen bonding, respectively. This dual interaction facilitates the liquid‐phase deposition of Li 2 O 2 while enabling efficient product decomposition. The uneven electrostatic potential distribution within the AP molecule generates an internal electric field that stabilizes reduced oxygen species, shields against nucleophilic attacks, and suppresses Li + deposition at the anode tips, effectively preventing lithium dendrite growth. Therefore, Li‐O 2 batteries with AP exhibit an exceptionally high discharge capacity of 36419 mAh g −1 , a significantly reduced charge over‐potential of 0.29 V, and an extended cycle life exceeding 2256 h. Through functional molecular structure design, the bidirectional coordination catalytic effect demonstrated by AP molecules effectively regulates the migration and interaction of substances during reactions, significantly improves the electrochemical performance of Li‐O 2 batteries.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202420678</identifier><language>eng</language><ispartof>Advanced functional materials, 2025-01</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c124t-baa47e872b5a74d22e5161a0dcadcddb1bfb0138bde088d065a3813f416657253</cites><orcidid>0000-0001-6569-2739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Huang, Mengyao</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>Xie, Mengran</creatorcontrib><creatorcontrib>Fu, Yaning</creatorcontrib><creatorcontrib>Li, Zhongjun</creatorcontrib><creatorcontrib>Lu, Youcai</creatorcontrib><creatorcontrib>Liu, Qingchao</creatorcontrib><title>Phase‐Transfer Catalyst for Lithium‐Oxygen Batteries Based on Bidirectional Coordination Catalysis: 2‐Aminopyridine</title><title>Advanced functional materials</title><description>Li‐O 2 batteries are considered promising candidates for next generation high energy storage systems due to their exceptionally theoretical energy density. However, the accumulation of insulating discharge product Li 2 O 2 leads to severe cathode passivation, reduced conductivity, and hindered charge transfer, which seriously compromise the battery performance. This work proposes a novel phase‐transfer catalyst with bidirectional coordination functionality, 2‐aminopyridine (AP). The AP molecule contains a nucleophilic pyridine nitrogen and an electrophilic amino hydrogen, which can interact with Li + and reactive oxygen intermediates through electrostatic attraction and hydrogen bonding, respectively. This dual interaction facilitates the liquid‐phase deposition of Li 2 O 2 while enabling efficient product decomposition. The uneven electrostatic potential distribution within the AP molecule generates an internal electric field that stabilizes reduced oxygen species, shields against nucleophilic attacks, and suppresses Li + deposition at the anode tips, effectively preventing lithium dendrite growth. Therefore, Li‐O 2 batteries with AP exhibit an exceptionally high discharge capacity of 36419 mAh g −1 , a significantly reduced charge over‐potential of 0.29 V, and an extended cycle life exceeding 2256 h. Through functional molecular structure design, the bidirectional coordination catalytic effect demonstrated by AP molecules effectively regulates the migration and interaction of substances during reactions, significantly improves the electrochemical performance of Li‐O 2 batteries.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo9kM9KxDAQh4MouK5ePecFWidJ2wRva_EfLKyHFbyVaZO4kW2zJBHszUfwGX0Su6h7mt_MMB_MR8glg5wB8CvUts858IJDJdURmbGKVZkAro4Pmb2ckrMY3wCYlKKYkfFpg9F8f36tAw7RmkBrTLgdY6LWB7p0aePe-2m_-hhfzUBvMCUTnIlTikZTP42cdsF0yfkBt7T2Pmg34L79Z7l4TfnEWPRu8LsxTAeDOScnFrfRXPzVOXm-u13XD9lydf9YL5ZZx3iRshaxkEZJ3pYoC825KadfEHSHutO6Za1tgQnVagNKaahKFIoJW7CqKiUvxZzkv9wu-BiDsc0uuB7D2DBo9uKavbjmIE78AIM8Zx8</recordid><startdate>20250113</startdate><enddate>20250113</enddate><creator>Huang, Mengyao</creator><creator>Wang, Nan</creator><creator>Xie, Mengran</creator><creator>Fu, Yaning</creator><creator>Li, Zhongjun</creator><creator>Lu, Youcai</creator><creator>Liu, Qingchao</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6569-2739</orcidid></search><sort><creationdate>20250113</creationdate><title>Phase‐Transfer Catalyst for Lithium‐Oxygen Batteries Based on Bidirectional Coordination Catalysis: 2‐Aminopyridine</title><author>Huang, Mengyao ; Wang, Nan ; Xie, Mengran ; Fu, Yaning ; Li, Zhongjun ; Lu, Youcai ; Liu, Qingchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c124t-baa47e872b5a74d22e5161a0dcadcddb1bfb0138bde088d065a3813f416657253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Mengyao</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>Xie, Mengran</creatorcontrib><creatorcontrib>Fu, Yaning</creatorcontrib><creatorcontrib>Li, Zhongjun</creatorcontrib><creatorcontrib>Lu, Youcai</creatorcontrib><creatorcontrib>Liu, Qingchao</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Mengyao</au><au>Wang, Nan</au><au>Xie, Mengran</au><au>Fu, Yaning</au><au>Li, Zhongjun</au><au>Lu, Youcai</au><au>Liu, Qingchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase‐Transfer Catalyst for Lithium‐Oxygen Batteries Based on Bidirectional Coordination Catalysis: 2‐Aminopyridine</atitle><jtitle>Advanced functional materials</jtitle><date>2025-01-13</date><risdate>2025</risdate><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Li‐O 2 batteries are considered promising candidates for next generation high energy storage systems due to their exceptionally theoretical energy density. However, the accumulation of insulating discharge product Li 2 O 2 leads to severe cathode passivation, reduced conductivity, and hindered charge transfer, which seriously compromise the battery performance. This work proposes a novel phase‐transfer catalyst with bidirectional coordination functionality, 2‐aminopyridine (AP). The AP molecule contains a nucleophilic pyridine nitrogen and an electrophilic amino hydrogen, which can interact with Li + and reactive oxygen intermediates through electrostatic attraction and hydrogen bonding, respectively. This dual interaction facilitates the liquid‐phase deposition of Li 2 O 2 while enabling efficient product decomposition. The uneven electrostatic potential distribution within the AP molecule generates an internal electric field that stabilizes reduced oxygen species, shields against nucleophilic attacks, and suppresses Li + deposition at the anode tips, effectively preventing lithium dendrite growth. Therefore, Li‐O 2 batteries with AP exhibit an exceptionally high discharge capacity of 36419 mAh g −1 , a significantly reduced charge over‐potential of 0.29 V, and an extended cycle life exceeding 2256 h. Through functional molecular structure design, the bidirectional coordination catalytic effect demonstrated by AP molecules effectively regulates the migration and interaction of substances during reactions, significantly improves the electrochemical performance of Li‐O 2 batteries.</abstract><doi>10.1002/adfm.202420678</doi><orcidid>https://orcid.org/0000-0001-6569-2739</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2025-01
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_202420678
source Wiley Online Library Journals Frontfile Complete
title Phase‐Transfer Catalyst for Lithium‐Oxygen Batteries Based on Bidirectional Coordination Catalysis: 2‐Aminopyridine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T11%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%E2%80%90Transfer%20Catalyst%20for%20Lithium%E2%80%90Oxygen%20Batteries%20Based%20on%20Bidirectional%20Coordination%20Catalysis:%202%E2%80%90Aminopyridine&rft.jtitle=Advanced%20functional%20materials&rft.au=Huang,%20Mengyao&rft.date=2025-01-13&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202420678&rft_dat=%3Ccrossref%3E10_1002_adfm_202420678%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true