Hierarchically Porous Carbon Colloidal Aerogels for Highly Efficient Flow Cells

Electrodes with high active areas often compromise with limited ion transport kinetics in flow electrochemical devices. Herein, hierarchically porous carbon colloidal aerogels (HPCCAs) are constructed with multiscale porosities to meet the tradeoff between highly active areas and efficient mass tran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-12
Hauptverfasser: Hou, Yinglai, Sheng, Zhizhi, Zhang, Mengchuang, Lin, Kaifa, Kong, Jie, Zhang, Xuetong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Advanced functional materials
container_volume
creator Hou, Yinglai
Sheng, Zhizhi
Zhang, Mengchuang
Lin, Kaifa
Kong, Jie
Zhang, Xuetong
description Electrodes with high active areas often compromise with limited ion transport kinetics in flow electrochemical devices. Herein, hierarchically porous carbon colloidal aerogels (HPCCAs) are constructed with multiscale porosities to meet the tradeoff between highly active areas and efficient mass transfer behavior. It is realized by introducing multiphase co‐separation in a sol‐gel transition process of aramid nanofibers/polyvinylpyrrolidone/carbon nanotubes followed by subsequent freeze‐drying and carbonization. The resulting HPCCA possesses a high volumetric electrochemically accessible surface area (3.27 × 10 7  m −1 ) and excellent mass transfer efficiency, 2–3 times higher permeability than commercial Toray carbon paper and 9.86 times higher than bare aerogel. An all‐vanadium single cell with HPCCAs as electrodes possesses a high energy efficiency of 83.18% under the current density of 100 mA cm −2 , which is 10–31% higher than most of the state‐of‐the‐art carbon electrode materials including commercial carbon papers. In addition, the cell with HPCCAs shows outstanding long‐term stability up to 1000 cycles. Notably, HPCCAs are applicable to more flow battery systems, such as iron/chromium (Fe/Cr), iron/vanadium (Fe/V), zinc/bromine (Zn/Br), vanadium/methylene blue (V/MB), sodium salt of flavin mononucleotide/potassium ferrocyanide (FMN‐Na/K 4 [Fe(CN) 6 ]), and methyl viologen/4‐hydroxy‐2,2,6,6‐tetramethyl‐piperidin‐1‐oxyl (MV/4‐HO‐TEMPO). This work offers a new chemistry paradigm for developing advanced nanoporous aerogel materials and paves the way toward highly efficient flow electrochemical devices.
doi_str_mv 10.1002/adfm.202418721
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202418721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202418721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c124t-2e7eaef2371a725f2fde7033b052714f5aeac21ae7ad9e098a7eb100197f8df63</originalsourceid><addsrcrecordid>eNo9kMFKw0AURQdRsFa3rucHEufNJJlkWUJrhUJdKLgLL8l77ci0IzMV6d_bonR17-Jy4B4hHkHloJR-wpF3uVa6gNpquBITqKDKjNL19aXDx624S-lTKbDWFBOxXjqKGIetG9D7o3wNMXwn2WLsw162wfvgRvRyRjFsyCfJIcql22xP2zmzGxztD3Lhw49syft0L24YfaKH_5yK98X8rV1mq_XzSztbZQPo4pBpsoTE2lhAq0vWPJJVxvSq1BYKLpFw0IBkcWxINTVa6k8vobFcj1yZqcj_uEMMKUXi7iu6HcZjB6o76-jOOrqLDvMLDz9UPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hierarchically Porous Carbon Colloidal Aerogels for Highly Efficient Flow Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hou, Yinglai ; Sheng, Zhizhi ; Zhang, Mengchuang ; Lin, Kaifa ; Kong, Jie ; Zhang, Xuetong</creator><creatorcontrib>Hou, Yinglai ; Sheng, Zhizhi ; Zhang, Mengchuang ; Lin, Kaifa ; Kong, Jie ; Zhang, Xuetong</creatorcontrib><description>Electrodes with high active areas often compromise with limited ion transport kinetics in flow electrochemical devices. Herein, hierarchically porous carbon colloidal aerogels (HPCCAs) are constructed with multiscale porosities to meet the tradeoff between highly active areas and efficient mass transfer behavior. It is realized by introducing multiphase co‐separation in a sol‐gel transition process of aramid nanofibers/polyvinylpyrrolidone/carbon nanotubes followed by subsequent freeze‐drying and carbonization. The resulting HPCCA possesses a high volumetric electrochemically accessible surface area (3.27 × 10 7  m −1 ) and excellent mass transfer efficiency, 2–3 times higher permeability than commercial Toray carbon paper and 9.86 times higher than bare aerogel. An all‐vanadium single cell with HPCCAs as electrodes possesses a high energy efficiency of 83.18% under the current density of 100 mA cm −2 , which is 10–31% higher than most of the state‐of‐the‐art carbon electrode materials including commercial carbon papers. In addition, the cell with HPCCAs shows outstanding long‐term stability up to 1000 cycles. Notably, HPCCAs are applicable to more flow battery systems, such as iron/chromium (Fe/Cr), iron/vanadium (Fe/V), zinc/bromine (Zn/Br), vanadium/methylene blue (V/MB), sodium salt of flavin mononucleotide/potassium ferrocyanide (FMN‐Na/K 4 [Fe(CN) 6 ]), and methyl viologen/4‐hydroxy‐2,2,6,6‐tetramethyl‐piperidin‐1‐oxyl (MV/4‐HO‐TEMPO). This work offers a new chemistry paradigm for developing advanced nanoporous aerogel materials and paves the way toward highly efficient flow electrochemical devices.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202418721</identifier><language>eng</language><ispartof>Advanced functional materials, 2024-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c124t-2e7eaef2371a725f2fde7033b052714f5aeac21ae7ad9e098a7eb100197f8df63</cites><orcidid>0000-0002-1268-9250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hou, Yinglai</creatorcontrib><creatorcontrib>Sheng, Zhizhi</creatorcontrib><creatorcontrib>Zhang, Mengchuang</creatorcontrib><creatorcontrib>Lin, Kaifa</creatorcontrib><creatorcontrib>Kong, Jie</creatorcontrib><creatorcontrib>Zhang, Xuetong</creatorcontrib><title>Hierarchically Porous Carbon Colloidal Aerogels for Highly Efficient Flow Cells</title><title>Advanced functional materials</title><description>Electrodes with high active areas often compromise with limited ion transport kinetics in flow electrochemical devices. Herein, hierarchically porous carbon colloidal aerogels (HPCCAs) are constructed with multiscale porosities to meet the tradeoff between highly active areas and efficient mass transfer behavior. It is realized by introducing multiphase co‐separation in a sol‐gel transition process of aramid nanofibers/polyvinylpyrrolidone/carbon nanotubes followed by subsequent freeze‐drying and carbonization. The resulting HPCCA possesses a high volumetric electrochemically accessible surface area (3.27 × 10 7  m −1 ) and excellent mass transfer efficiency, 2–3 times higher permeability than commercial Toray carbon paper and 9.86 times higher than bare aerogel. An all‐vanadium single cell with HPCCAs as electrodes possesses a high energy efficiency of 83.18% under the current density of 100 mA cm −2 , which is 10–31% higher than most of the state‐of‐the‐art carbon electrode materials including commercial carbon papers. In addition, the cell with HPCCAs shows outstanding long‐term stability up to 1000 cycles. Notably, HPCCAs are applicable to more flow battery systems, such as iron/chromium (Fe/Cr), iron/vanadium (Fe/V), zinc/bromine (Zn/Br), vanadium/methylene blue (V/MB), sodium salt of flavin mononucleotide/potassium ferrocyanide (FMN‐Na/K 4 [Fe(CN) 6 ]), and methyl viologen/4‐hydroxy‐2,2,6,6‐tetramethyl‐piperidin‐1‐oxyl (MV/4‐HO‐TEMPO). This work offers a new chemistry paradigm for developing advanced nanoporous aerogel materials and paves the way toward highly efficient flow electrochemical devices.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKw0AURQdRsFa3rucHEufNJJlkWUJrhUJdKLgLL8l77ci0IzMV6d_bonR17-Jy4B4hHkHloJR-wpF3uVa6gNpquBITqKDKjNL19aXDx624S-lTKbDWFBOxXjqKGIetG9D7o3wNMXwn2WLsw162wfvgRvRyRjFsyCfJIcql22xP2zmzGxztD3Lhw49syft0L24YfaKH_5yK98X8rV1mq_XzSztbZQPo4pBpsoTE2lhAq0vWPJJVxvSq1BYKLpFw0IBkcWxINTVa6k8vobFcj1yZqcj_uEMMKUXi7iu6HcZjB6o76-jOOrqLDvMLDz9UPA</recordid><startdate>20241224</startdate><enddate>20241224</enddate><creator>Hou, Yinglai</creator><creator>Sheng, Zhizhi</creator><creator>Zhang, Mengchuang</creator><creator>Lin, Kaifa</creator><creator>Kong, Jie</creator><creator>Zhang, Xuetong</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1268-9250</orcidid></search><sort><creationdate>20241224</creationdate><title>Hierarchically Porous Carbon Colloidal Aerogels for Highly Efficient Flow Cells</title><author>Hou, Yinglai ; Sheng, Zhizhi ; Zhang, Mengchuang ; Lin, Kaifa ; Kong, Jie ; Zhang, Xuetong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c124t-2e7eaef2371a725f2fde7033b052714f5aeac21ae7ad9e098a7eb100197f8df63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Yinglai</creatorcontrib><creatorcontrib>Sheng, Zhizhi</creatorcontrib><creatorcontrib>Zhang, Mengchuang</creatorcontrib><creatorcontrib>Lin, Kaifa</creatorcontrib><creatorcontrib>Kong, Jie</creatorcontrib><creatorcontrib>Zhang, Xuetong</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Yinglai</au><au>Sheng, Zhizhi</au><au>Zhang, Mengchuang</au><au>Lin, Kaifa</au><au>Kong, Jie</au><au>Zhang, Xuetong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchically Porous Carbon Colloidal Aerogels for Highly Efficient Flow Cells</atitle><jtitle>Advanced functional materials</jtitle><date>2024-12-24</date><risdate>2024</risdate><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Electrodes with high active areas often compromise with limited ion transport kinetics in flow electrochemical devices. Herein, hierarchically porous carbon colloidal aerogels (HPCCAs) are constructed with multiscale porosities to meet the tradeoff between highly active areas and efficient mass transfer behavior. It is realized by introducing multiphase co‐separation in a sol‐gel transition process of aramid nanofibers/polyvinylpyrrolidone/carbon nanotubes followed by subsequent freeze‐drying and carbonization. The resulting HPCCA possesses a high volumetric electrochemically accessible surface area (3.27 × 10 7  m −1 ) and excellent mass transfer efficiency, 2–3 times higher permeability than commercial Toray carbon paper and 9.86 times higher than bare aerogel. An all‐vanadium single cell with HPCCAs as electrodes possesses a high energy efficiency of 83.18% under the current density of 100 mA cm −2 , which is 10–31% higher than most of the state‐of‐the‐art carbon electrode materials including commercial carbon papers. In addition, the cell with HPCCAs shows outstanding long‐term stability up to 1000 cycles. Notably, HPCCAs are applicable to more flow battery systems, such as iron/chromium (Fe/Cr), iron/vanadium (Fe/V), zinc/bromine (Zn/Br), vanadium/methylene blue (V/MB), sodium salt of flavin mononucleotide/potassium ferrocyanide (FMN‐Na/K 4 [Fe(CN) 6 ]), and methyl viologen/4‐hydroxy‐2,2,6,6‐tetramethyl‐piperidin‐1‐oxyl (MV/4‐HO‐TEMPO). This work offers a new chemistry paradigm for developing advanced nanoporous aerogel materials and paves the way toward highly efficient flow electrochemical devices.</abstract><doi>10.1002/adfm.202418721</doi><orcidid>https://orcid.org/0000-0002-1268-9250</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-12
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_202418721
source Wiley Online Library Journals Frontfile Complete
title Hierarchically Porous Carbon Colloidal Aerogels for Highly Efficient Flow Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A31%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchically%20Porous%20Carbon%20Colloidal%20Aerogels%20for%20Highly%20Efficient%20Flow%20Cells&rft.jtitle=Advanced%20functional%20materials&rft.au=Hou,%20Yinglai&rft.date=2024-12-24&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202418721&rft_dat=%3Ccrossref%3E10_1002_adfm_202418721%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true