Transparent and Durable Terahertz Absorber Based on Enhanced Wave‐Ion Interaction

Hydrogels, featuring high flexibility and stretchability, have intense wave‐matter interaction in the terahertz (THz) band and high transparency in the visible light band, making them promising materials for transparent THz absorbers in the optical windows of THz devices. However, conventional hydro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-12
Hauptverfasser: Xie, Wenke, Xie, Jinlong, Li, Sitong, Liu, Jiateng, Xiao, Xu, Wen, Qiye, Ding, Tianpeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Advanced functional materials
container_volume
creator Xie, Wenke
Xie, Jinlong
Li, Sitong
Liu, Jiateng
Xiao, Xu
Wen, Qiye
Ding, Tianpeng
description Hydrogels, featuring high flexibility and stretchability, have intense wave‐matter interaction in the terahertz (THz) band and high transparency in the visible light band, making them promising materials for transparent THz absorbers in the optical windows of THz devices. However, conventional hydrogels suffer from poor environmental stability, as water evaporation or freezing at subzero temperatures weakens their THz absorption and visible transmittance. Here, An ion‐rich hydrogel film is presented to concurrently boost the THz wave‐ion and intermolecular interactions. The boosted interactions increase the ionic conduction loss and improve the antidrying and antifreezing performance. As a result, with polydimethylsiloxane (PDMS) as the encapsulation layer and antireflection layer, the flexible ionic‐hydrogel‐based THz absorber shows a high maximum reflection loss (RL) of 86.51 dB in the 0.5–4.5 THz range (100% qualified bandwidth) and a high average visible transmittance of 90.87% with a thickness of only 300 µm. Moreover, it still possesses a high average RL of 39.35 dB after 80 days at room temperature and a high average electromagnetic interference shielding efficiency (EMI SE) of 42.30 dB at −10 °C. This work demonstrates the feasibility of transparent ionic THz absorbers, offering inspiration for future ionic THz device designs.
doi_str_mv 10.1002/adfm.202418541
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202418541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202418541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c124t-3049e97878ebac42de13733288a3c322722da106c6de9f6aac6d61d12d71330b3</originalsourceid><addsrcrecordid>eNo9kMFKAzEURYMoWKtb1_mBqXlJTGaWtdY6UHDhiO6GN8kbWmkzJRkFXfkJfqNf4hSlq3d4cC-Xw9gliAkIIa_Qt9uJFFJDfq3hiI3AgMmUkPnxgeHllJ2l9CoEWKv0iD1WEUPaYaTQcwye375FbDbEK4q4oth_8mmTuthQ5DeYyPMu8HlYYXADP-M7_Xx9l8OvDP2QcP26C-fspMVNoov_O2ZPd_Nqdp8tHxblbLrMHEjdD2t0QYXNbU4NOi09gbJKyTxH5ZSUVkqPIIwznorWIA5gwIP0FpQSjRqzyV-vi11Kkdp6F9dbjB81iHqvpN4rqQ9K1C_TOlWq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transparent and Durable Terahertz Absorber Based on Enhanced Wave‐Ion Interaction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xie, Wenke ; Xie, Jinlong ; Li, Sitong ; Liu, Jiateng ; Xiao, Xu ; Wen, Qiye ; Ding, Tianpeng</creator><creatorcontrib>Xie, Wenke ; Xie, Jinlong ; Li, Sitong ; Liu, Jiateng ; Xiao, Xu ; Wen, Qiye ; Ding, Tianpeng</creatorcontrib><description>Hydrogels, featuring high flexibility and stretchability, have intense wave‐matter interaction in the terahertz (THz) band and high transparency in the visible light band, making them promising materials for transparent THz absorbers in the optical windows of THz devices. However, conventional hydrogels suffer from poor environmental stability, as water evaporation or freezing at subzero temperatures weakens their THz absorption and visible transmittance. Here, An ion‐rich hydrogel film is presented to concurrently boost the THz wave‐ion and intermolecular interactions. The boosted interactions increase the ionic conduction loss and improve the antidrying and antifreezing performance. As a result, with polydimethylsiloxane (PDMS) as the encapsulation layer and antireflection layer, the flexible ionic‐hydrogel‐based THz absorber shows a high maximum reflection loss (RL) of 86.51 dB in the 0.5–4.5 THz range (100% qualified bandwidth) and a high average visible transmittance of 90.87% with a thickness of only 300 µm. Moreover, it still possesses a high average RL of 39.35 dB after 80 days at room temperature and a high average electromagnetic interference shielding efficiency (EMI SE) of 42.30 dB at −10 °C. This work demonstrates the feasibility of transparent ionic THz absorbers, offering inspiration for future ionic THz device designs.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202418541</identifier><language>eng</language><ispartof>Advanced functional materials, 2024-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c124t-3049e97878ebac42de13733288a3c322722da106c6de9f6aac6d61d12d71330b3</cites><orcidid>0000-0002-3936-2573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Xie, Wenke</creatorcontrib><creatorcontrib>Xie, Jinlong</creatorcontrib><creatorcontrib>Li, Sitong</creatorcontrib><creatorcontrib>Liu, Jiateng</creatorcontrib><creatorcontrib>Xiao, Xu</creatorcontrib><creatorcontrib>Wen, Qiye</creatorcontrib><creatorcontrib>Ding, Tianpeng</creatorcontrib><title>Transparent and Durable Terahertz Absorber Based on Enhanced Wave‐Ion Interaction</title><title>Advanced functional materials</title><description>Hydrogels, featuring high flexibility and stretchability, have intense wave‐matter interaction in the terahertz (THz) band and high transparency in the visible light band, making them promising materials for transparent THz absorbers in the optical windows of THz devices. However, conventional hydrogels suffer from poor environmental stability, as water evaporation or freezing at subzero temperatures weakens their THz absorption and visible transmittance. Here, An ion‐rich hydrogel film is presented to concurrently boost the THz wave‐ion and intermolecular interactions. The boosted interactions increase the ionic conduction loss and improve the antidrying and antifreezing performance. As a result, with polydimethylsiloxane (PDMS) as the encapsulation layer and antireflection layer, the flexible ionic‐hydrogel‐based THz absorber shows a high maximum reflection loss (RL) of 86.51 dB in the 0.5–4.5 THz range (100% qualified bandwidth) and a high average visible transmittance of 90.87% with a thickness of only 300 µm. Moreover, it still possesses a high average RL of 39.35 dB after 80 days at room temperature and a high average electromagnetic interference shielding efficiency (EMI SE) of 42.30 dB at −10 °C. This work demonstrates the feasibility of transparent ionic THz absorbers, offering inspiration for future ionic THz device designs.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKAzEURYMoWKtb1_mBqXlJTGaWtdY6UHDhiO6GN8kbWmkzJRkFXfkJfqNf4hSlq3d4cC-Xw9gliAkIIa_Qt9uJFFJDfq3hiI3AgMmUkPnxgeHllJ2l9CoEWKv0iD1WEUPaYaTQcwye375FbDbEK4q4oth_8mmTuthQ5DeYyPMu8HlYYXADP-M7_Xx9l8OvDP2QcP26C-fspMVNoov_O2ZPd_Nqdp8tHxblbLrMHEjdD2t0QYXNbU4NOi09gbJKyTxH5ZSUVkqPIIwznorWIA5gwIP0FpQSjRqzyV-vi11Kkdp6F9dbjB81iHqvpN4rqQ9K1C_TOlWq</recordid><startdate>20241229</startdate><enddate>20241229</enddate><creator>Xie, Wenke</creator><creator>Xie, Jinlong</creator><creator>Li, Sitong</creator><creator>Liu, Jiateng</creator><creator>Xiao, Xu</creator><creator>Wen, Qiye</creator><creator>Ding, Tianpeng</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3936-2573</orcidid></search><sort><creationdate>20241229</creationdate><title>Transparent and Durable Terahertz Absorber Based on Enhanced Wave‐Ion Interaction</title><author>Xie, Wenke ; Xie, Jinlong ; Li, Sitong ; Liu, Jiateng ; Xiao, Xu ; Wen, Qiye ; Ding, Tianpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c124t-3049e97878ebac42de13733288a3c322722da106c6de9f6aac6d61d12d71330b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Wenke</creatorcontrib><creatorcontrib>Xie, Jinlong</creatorcontrib><creatorcontrib>Li, Sitong</creatorcontrib><creatorcontrib>Liu, Jiateng</creatorcontrib><creatorcontrib>Xiao, Xu</creatorcontrib><creatorcontrib>Wen, Qiye</creatorcontrib><creatorcontrib>Ding, Tianpeng</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Wenke</au><au>Xie, Jinlong</au><au>Li, Sitong</au><au>Liu, Jiateng</au><au>Xiao, Xu</au><au>Wen, Qiye</au><au>Ding, Tianpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transparent and Durable Terahertz Absorber Based on Enhanced Wave‐Ion Interaction</atitle><jtitle>Advanced functional materials</jtitle><date>2024-12-29</date><risdate>2024</risdate><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Hydrogels, featuring high flexibility and stretchability, have intense wave‐matter interaction in the terahertz (THz) band and high transparency in the visible light band, making them promising materials for transparent THz absorbers in the optical windows of THz devices. However, conventional hydrogels suffer from poor environmental stability, as water evaporation or freezing at subzero temperatures weakens their THz absorption and visible transmittance. Here, An ion‐rich hydrogel film is presented to concurrently boost the THz wave‐ion and intermolecular interactions. The boosted interactions increase the ionic conduction loss and improve the antidrying and antifreezing performance. As a result, with polydimethylsiloxane (PDMS) as the encapsulation layer and antireflection layer, the flexible ionic‐hydrogel‐based THz absorber shows a high maximum reflection loss (RL) of 86.51 dB in the 0.5–4.5 THz range (100% qualified bandwidth) and a high average visible transmittance of 90.87% with a thickness of only 300 µm. Moreover, it still possesses a high average RL of 39.35 dB after 80 days at room temperature and a high average electromagnetic interference shielding efficiency (EMI SE) of 42.30 dB at −10 °C. This work demonstrates the feasibility of transparent ionic THz absorbers, offering inspiration for future ionic THz device designs.</abstract><doi>10.1002/adfm.202418541</doi><orcidid>https://orcid.org/0000-0002-3936-2573</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-12
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_202418541
source Wiley Online Library Journals Frontfile Complete
title Transparent and Durable Terahertz Absorber Based on Enhanced Wave‐Ion Interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transparent%20and%20Durable%20Terahertz%20Absorber%20Based%20on%20Enhanced%20Wave%E2%80%90Ion%20Interaction&rft.jtitle=Advanced%20functional%20materials&rft.au=Xie,%20Wenke&rft.date=2024-12-29&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202418541&rft_dat=%3Ccrossref%3E10_1002_adfm_202418541%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true