A High‐Accuracy Facial Expression Recognition System Combining Triboelectric Hydrogel Sensors With Deep Learning

Facial expression recognition (FER) is significant for daily mental health monitoring because facial expressions reflect an individual's mental condition. However, it is still hard to achieve accurate and convenient FER using wearable devices. Here, a high‐accuracy, self‐powered, and intelligen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-12
Hauptverfasser: Zhao, Yiqiao, Li, Longwei, Zhang, Jiawei, Zhou, Puen, Wang, Xiaoyao, Sun, Xinru, Mao, Junqi, Pu, Xiong, Zhang, Yuanzheng, Zheng, Haiwu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Advanced functional materials
container_volume
creator Zhao, Yiqiao
Li, Longwei
Zhang, Jiawei
Zhou, Puen
Wang, Xiaoyao
Sun, Xinru
Mao, Junqi
Pu, Xiong
Zhang, Yuanzheng
Zheng, Haiwu
description Facial expression recognition (FER) is significant for daily mental health monitoring because facial expressions reflect an individual's mental condition. However, it is still hard to achieve accurate and convenient FER using wearable devices. Here, a high‐accuracy, self‐powered, and intelligent FER system is reported consisting of a triboelectric hydrogel sensor network to collect facial expression signals and a deep learning model to process and recognize the signals. The triboelectric hydrogel sensors are demonstrated to show excellent properties, such as 50% stretchability, 90% transparency, and a response time of 48 ms. With a 1D convolutional neural network, six basic expressions can be recognized with an average recognition accuracy of 99.44%. Finally, a 3D virtual character model is built on a computer to display real emotions synchronously. Compared with previous similar reports, this system can recognize more types of expressions with significantly improved accuracy. Therefore, this work can potentially not only help doctors to determine a patient's mental health condition through virtual communication while protecting the patient's privacy but also provide a highly promising approach for virtual telemedicine in the future.
doi_str_mv 10.1002/adfm.202418265
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202418265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202418265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c124t-8004a14cad8f488ebe6bb0ab97abb7a738ad754746b71b7c4efae342244823573</originalsourceid><addsrcrecordid>eNo9kM1Kw0AURgdRsFa3rucFUuevmXFZamuFgmArugt3JjfpSJIpMxHMzkfwGX0SCYqr72y-sziEXHM244yJGyirdiaYUNyIfH5CJjzneSaZMKf_zF_PyUVKb4xxraWakLigG18fvj-_Fs69R3ADXYPz0NDVxzFiSj509AldqDvfj7wbUo8tXYbW-s53Nd1HbwM26ProHd0MZQw1NnSHXQox0RffH-gd4pFuEeL4uCRnFTQJr_52Sp7Xq_1yk20f7x-Wi23muFB9ZhhTwJWD0lTKGLSYW8vA3mqwVoOWBko9V1rlVnOrncIKUCohlDJCzrWcktmv18WQUsSqOEbfQhwKzoqxWDEWK_6LyR9eeGIK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A High‐Accuracy Facial Expression Recognition System Combining Triboelectric Hydrogel Sensors With Deep Learning</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhao, Yiqiao ; Li, Longwei ; Zhang, Jiawei ; Zhou, Puen ; Wang, Xiaoyao ; Sun, Xinru ; Mao, Junqi ; Pu, Xiong ; Zhang, Yuanzheng ; Zheng, Haiwu</creator><creatorcontrib>Zhao, Yiqiao ; Li, Longwei ; Zhang, Jiawei ; Zhou, Puen ; Wang, Xiaoyao ; Sun, Xinru ; Mao, Junqi ; Pu, Xiong ; Zhang, Yuanzheng ; Zheng, Haiwu</creatorcontrib><description>Facial expression recognition (FER) is significant for daily mental health monitoring because facial expressions reflect an individual's mental condition. However, it is still hard to achieve accurate and convenient FER using wearable devices. Here, a high‐accuracy, self‐powered, and intelligent FER system is reported consisting of a triboelectric hydrogel sensor network to collect facial expression signals and a deep learning model to process and recognize the signals. The triboelectric hydrogel sensors are demonstrated to show excellent properties, such as 50% stretchability, 90% transparency, and a response time of 48 ms. With a 1D convolutional neural network, six basic expressions can be recognized with an average recognition accuracy of 99.44%. Finally, a 3D virtual character model is built on a computer to display real emotions synchronously. Compared with previous similar reports, this system can recognize more types of expressions with significantly improved accuracy. Therefore, this work can potentially not only help doctors to determine a patient's mental health condition through virtual communication while protecting the patient's privacy but also provide a highly promising approach for virtual telemedicine in the future.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202418265</identifier><language>eng</language><ispartof>Advanced functional materials, 2024-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c124t-8004a14cad8f488ebe6bb0ab97abb7a738ad754746b71b7c4efae342244823573</cites><orcidid>0000-0002-2021-4159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhao, Yiqiao</creatorcontrib><creatorcontrib>Li, Longwei</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Zhou, Puen</creatorcontrib><creatorcontrib>Wang, Xiaoyao</creatorcontrib><creatorcontrib>Sun, Xinru</creatorcontrib><creatorcontrib>Mao, Junqi</creatorcontrib><creatorcontrib>Pu, Xiong</creatorcontrib><creatorcontrib>Zhang, Yuanzheng</creatorcontrib><creatorcontrib>Zheng, Haiwu</creatorcontrib><title>A High‐Accuracy Facial Expression Recognition System Combining Triboelectric Hydrogel Sensors With Deep Learning</title><title>Advanced functional materials</title><description>Facial expression recognition (FER) is significant for daily mental health monitoring because facial expressions reflect an individual's mental condition. However, it is still hard to achieve accurate and convenient FER using wearable devices. Here, a high‐accuracy, self‐powered, and intelligent FER system is reported consisting of a triboelectric hydrogel sensor network to collect facial expression signals and a deep learning model to process and recognize the signals. The triboelectric hydrogel sensors are demonstrated to show excellent properties, such as 50% stretchability, 90% transparency, and a response time of 48 ms. With a 1D convolutional neural network, six basic expressions can be recognized with an average recognition accuracy of 99.44%. Finally, a 3D virtual character model is built on a computer to display real emotions synchronously. Compared with previous similar reports, this system can recognize more types of expressions with significantly improved accuracy. Therefore, this work can potentially not only help doctors to determine a patient's mental health condition through virtual communication while protecting the patient's privacy but also provide a highly promising approach for virtual telemedicine in the future.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AURgdRsFa3rucFUuevmXFZamuFgmArugt3JjfpSJIpMxHMzkfwGX0SCYqr72y-sziEXHM244yJGyirdiaYUNyIfH5CJjzneSaZMKf_zF_PyUVKb4xxraWakLigG18fvj-_Fs69R3ADXYPz0NDVxzFiSj509AldqDvfj7wbUo8tXYbW-s53Nd1HbwM26ProHd0MZQw1NnSHXQox0RffH-gd4pFuEeL4uCRnFTQJr_52Sp7Xq_1yk20f7x-Wi23muFB9ZhhTwJWD0lTKGLSYW8vA3mqwVoOWBko9V1rlVnOrncIKUCohlDJCzrWcktmv18WQUsSqOEbfQhwKzoqxWDEWK_6LyR9eeGIK</recordid><startdate>20241231</startdate><enddate>20241231</enddate><creator>Zhao, Yiqiao</creator><creator>Li, Longwei</creator><creator>Zhang, Jiawei</creator><creator>Zhou, Puen</creator><creator>Wang, Xiaoyao</creator><creator>Sun, Xinru</creator><creator>Mao, Junqi</creator><creator>Pu, Xiong</creator><creator>Zhang, Yuanzheng</creator><creator>Zheng, Haiwu</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2021-4159</orcidid></search><sort><creationdate>20241231</creationdate><title>A High‐Accuracy Facial Expression Recognition System Combining Triboelectric Hydrogel Sensors With Deep Learning</title><author>Zhao, Yiqiao ; Li, Longwei ; Zhang, Jiawei ; Zhou, Puen ; Wang, Xiaoyao ; Sun, Xinru ; Mao, Junqi ; Pu, Xiong ; Zhang, Yuanzheng ; Zheng, Haiwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c124t-8004a14cad8f488ebe6bb0ab97abb7a738ad754746b71b7c4efae342244823573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yiqiao</creatorcontrib><creatorcontrib>Li, Longwei</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Zhou, Puen</creatorcontrib><creatorcontrib>Wang, Xiaoyao</creatorcontrib><creatorcontrib>Sun, Xinru</creatorcontrib><creatorcontrib>Mao, Junqi</creatorcontrib><creatorcontrib>Pu, Xiong</creatorcontrib><creatorcontrib>Zhang, Yuanzheng</creatorcontrib><creatorcontrib>Zheng, Haiwu</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yiqiao</au><au>Li, Longwei</au><au>Zhang, Jiawei</au><au>Zhou, Puen</au><au>Wang, Xiaoyao</au><au>Sun, Xinru</au><au>Mao, Junqi</au><au>Pu, Xiong</au><au>Zhang, Yuanzheng</au><au>Zheng, Haiwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High‐Accuracy Facial Expression Recognition System Combining Triboelectric Hydrogel Sensors With Deep Learning</atitle><jtitle>Advanced functional materials</jtitle><date>2024-12-31</date><risdate>2024</risdate><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Facial expression recognition (FER) is significant for daily mental health monitoring because facial expressions reflect an individual's mental condition. However, it is still hard to achieve accurate and convenient FER using wearable devices. Here, a high‐accuracy, self‐powered, and intelligent FER system is reported consisting of a triboelectric hydrogel sensor network to collect facial expression signals and a deep learning model to process and recognize the signals. The triboelectric hydrogel sensors are demonstrated to show excellent properties, such as 50% stretchability, 90% transparency, and a response time of 48 ms. With a 1D convolutional neural network, six basic expressions can be recognized with an average recognition accuracy of 99.44%. Finally, a 3D virtual character model is built on a computer to display real emotions synchronously. Compared with previous similar reports, this system can recognize more types of expressions with significantly improved accuracy. Therefore, this work can potentially not only help doctors to determine a patient's mental health condition through virtual communication while protecting the patient's privacy but also provide a highly promising approach for virtual telemedicine in the future.</abstract><doi>10.1002/adfm.202418265</doi><orcidid>https://orcid.org/0000-0002-2021-4159</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-12
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_202418265
source Wiley Online Library Journals Frontfile Complete
title A High‐Accuracy Facial Expression Recognition System Combining Triboelectric Hydrogel Sensors With Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High%E2%80%90Accuracy%20Facial%20Expression%20Recognition%20System%20Combining%20Triboelectric%20Hydrogel%20Sensors%20With%20Deep%20Learning&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhao,%20Yiqiao&rft.date=2024-12-31&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202418265&rft_dat=%3Ccrossref%3E10_1002_adfm_202418265%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true