Optimizing Sodium Ion Adsorption Through Robust d–d Orbital Modulation for Efficient Capacitive Deionization
Unraveling the fundamental mechanisms of sodium ion adsorption behavior is crucial for guiding the design of electrode materials and enhancing the performance of capacitive deionization systems. Herein, the optimization of sodium ion adsorption is systematically investigated through the robust d–d o...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-11 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Advanced functional materials |
container_volume | |
creator | Yu, Muran Li, Daqing Sui, Guozhe Guo, Dongxuan Chu, Dawei Li, Yue Chai, Dong‐Feng Li, Jinlong |
description | Unraveling the fundamental mechanisms of sodium ion adsorption behavior is crucial for guiding the design of electrode materials and enhancing the performance of capacitive deionization systems. Herein, the optimization of sodium ion adsorption is systematically investigated through the robust d–d orbital interactions within zinc‐doped iron carbide, facilitated by a novel liquid nitrogen quenching treatment. Liquid nitrogen quenching treatment can enhance the coordination number, strengthen d–d orbital interactions, promote electron transfer, and shift the d‐band center of Fe closer to the Fermi level, thereby enhancing sodium ions adsorption energy. Consequently, the obtained electrode material achieves a superior gravimetric adsorption capacity of 121.1 mg g
−1
and attractive cyclic durability. The adsorption capacity is highly competitive compared to the vast majority of related research works in the field of capacitive deionization. Furthermore, sodium ion adsorption/desorption mechanisms are substantiated through ex situ techniques, revealing dynamic atomic and electronic structure evolutions under operational conditions. This work demonstrates that optimizing sodium ion adsorption via robust d–d orbital modulation enabled by liquid nitrogen quenching treatment is an effective approach for developing efficient capacitive deionization electrode materials. |
doi_str_mv | 10.1002/adfm.202416963 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202416963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202416963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c164t-516eadd2e4cbdb0fd5bce0675c03c8a85af22e0386711b5ad302d47f478a51563</originalsourceid><addsrcrecordid>eNo9kN1KwzAcxYMoOKe3XucFOvNPmrRejjl1MBnoBO9Kmo8t0jYlaQV35Tv4hj6J3ZRdnQPncOD8ELoGMgFC6I3Utp5QQlMQt4KdoBEIEAkjND89eng7RxcxvhMCWcbSEWpWbedqt3PNBr947foaL3yDpzr6MCSDXW-D7zdb_OzLPnZY_3x9a7wKpetkhZ-87it56Fkf8Nxap5xpOjyTrVSucx8G35khdrtD6xKdWVlFc_WvY_R6P1_PHpPl6mExmy4TBSLtEg7CSK2pSVWpS2I1L5UhIuOKMJXLnEtLqSEsFxlAyaUeXuo0s2mWSw5csDGa_O2q4GMMxhZtcLUMnwWQYk-r2NMqjrTYL_mVYSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimizing Sodium Ion Adsorption Through Robust d–d Orbital Modulation for Efficient Capacitive Deionization</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yu, Muran ; Li, Daqing ; Sui, Guozhe ; Guo, Dongxuan ; Chu, Dawei ; Li, Yue ; Chai, Dong‐Feng ; Li, Jinlong</creator><creatorcontrib>Yu, Muran ; Li, Daqing ; Sui, Guozhe ; Guo, Dongxuan ; Chu, Dawei ; Li, Yue ; Chai, Dong‐Feng ; Li, Jinlong</creatorcontrib><description>Unraveling the fundamental mechanisms of sodium ion adsorption behavior is crucial for guiding the design of electrode materials and enhancing the performance of capacitive deionization systems. Herein, the optimization of sodium ion adsorption is systematically investigated through the robust d–d orbital interactions within zinc‐doped iron carbide, facilitated by a novel liquid nitrogen quenching treatment. Liquid nitrogen quenching treatment can enhance the coordination number, strengthen d–d orbital interactions, promote electron transfer, and shift the d‐band center of Fe closer to the Fermi level, thereby enhancing sodium ions adsorption energy. Consequently, the obtained electrode material achieves a superior gravimetric adsorption capacity of 121.1 mg g
−1
and attractive cyclic durability. The adsorption capacity is highly competitive compared to the vast majority of related research works in the field of capacitive deionization. Furthermore, sodium ion adsorption/desorption mechanisms are substantiated through ex situ techniques, revealing dynamic atomic and electronic structure evolutions under operational conditions. This work demonstrates that optimizing sodium ion adsorption via robust d–d orbital modulation enabled by liquid nitrogen quenching treatment is an effective approach for developing efficient capacitive deionization electrode materials.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202416963</identifier><language>eng</language><ispartof>Advanced functional materials, 2024-11</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c164t-516eadd2e4cbdb0fd5bce0675c03c8a85af22e0386711b5ad302d47f478a51563</cites><orcidid>0000-0002-4405-5260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yu, Muran</creatorcontrib><creatorcontrib>Li, Daqing</creatorcontrib><creatorcontrib>Sui, Guozhe</creatorcontrib><creatorcontrib>Guo, Dongxuan</creatorcontrib><creatorcontrib>Chu, Dawei</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Chai, Dong‐Feng</creatorcontrib><creatorcontrib>Li, Jinlong</creatorcontrib><title>Optimizing Sodium Ion Adsorption Through Robust d–d Orbital Modulation for Efficient Capacitive Deionization</title><title>Advanced functional materials</title><description>Unraveling the fundamental mechanisms of sodium ion adsorption behavior is crucial for guiding the design of electrode materials and enhancing the performance of capacitive deionization systems. Herein, the optimization of sodium ion adsorption is systematically investigated through the robust d–d orbital interactions within zinc‐doped iron carbide, facilitated by a novel liquid nitrogen quenching treatment. Liquid nitrogen quenching treatment can enhance the coordination number, strengthen d–d orbital interactions, promote electron transfer, and shift the d‐band center of Fe closer to the Fermi level, thereby enhancing sodium ions adsorption energy. Consequently, the obtained electrode material achieves a superior gravimetric adsorption capacity of 121.1 mg g
−1
and attractive cyclic durability. The adsorption capacity is highly competitive compared to the vast majority of related research works in the field of capacitive deionization. Furthermore, sodium ion adsorption/desorption mechanisms are substantiated through ex situ techniques, revealing dynamic atomic and electronic structure evolutions under operational conditions. This work demonstrates that optimizing sodium ion adsorption via robust d–d orbital modulation enabled by liquid nitrogen quenching treatment is an effective approach for developing efficient capacitive deionization electrode materials.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kN1KwzAcxYMoOKe3XucFOvNPmrRejjl1MBnoBO9Kmo8t0jYlaQV35Tv4hj6J3ZRdnQPncOD8ELoGMgFC6I3Utp5QQlMQt4KdoBEIEAkjND89eng7RxcxvhMCWcbSEWpWbedqt3PNBr947foaL3yDpzr6MCSDXW-D7zdb_OzLPnZY_3x9a7wKpetkhZ-87it56Fkf8Nxap5xpOjyTrVSucx8G35khdrtD6xKdWVlFc_WvY_R6P1_PHpPl6mExmy4TBSLtEg7CSK2pSVWpS2I1L5UhIuOKMJXLnEtLqSEsFxlAyaUeXuo0s2mWSw5csDGa_O2q4GMMxhZtcLUMnwWQYk-r2NMqjrTYL_mVYSg</recordid><startdate>20241105</startdate><enddate>20241105</enddate><creator>Yu, Muran</creator><creator>Li, Daqing</creator><creator>Sui, Guozhe</creator><creator>Guo, Dongxuan</creator><creator>Chu, Dawei</creator><creator>Li, Yue</creator><creator>Chai, Dong‐Feng</creator><creator>Li, Jinlong</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4405-5260</orcidid></search><sort><creationdate>20241105</creationdate><title>Optimizing Sodium Ion Adsorption Through Robust d–d Orbital Modulation for Efficient Capacitive Deionization</title><author>Yu, Muran ; Li, Daqing ; Sui, Guozhe ; Guo, Dongxuan ; Chu, Dawei ; Li, Yue ; Chai, Dong‐Feng ; Li, Jinlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c164t-516eadd2e4cbdb0fd5bce0675c03c8a85af22e0386711b5ad302d47f478a51563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Muran</creatorcontrib><creatorcontrib>Li, Daqing</creatorcontrib><creatorcontrib>Sui, Guozhe</creatorcontrib><creatorcontrib>Guo, Dongxuan</creatorcontrib><creatorcontrib>Chu, Dawei</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Chai, Dong‐Feng</creatorcontrib><creatorcontrib>Li, Jinlong</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Muran</au><au>Li, Daqing</au><au>Sui, Guozhe</au><au>Guo, Dongxuan</au><au>Chu, Dawei</au><au>Li, Yue</au><au>Chai, Dong‐Feng</au><au>Li, Jinlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Sodium Ion Adsorption Through Robust d–d Orbital Modulation for Efficient Capacitive Deionization</atitle><jtitle>Advanced functional materials</jtitle><date>2024-11-05</date><risdate>2024</risdate><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Unraveling the fundamental mechanisms of sodium ion adsorption behavior is crucial for guiding the design of electrode materials and enhancing the performance of capacitive deionization systems. Herein, the optimization of sodium ion adsorption is systematically investigated through the robust d–d orbital interactions within zinc‐doped iron carbide, facilitated by a novel liquid nitrogen quenching treatment. Liquid nitrogen quenching treatment can enhance the coordination number, strengthen d–d orbital interactions, promote electron transfer, and shift the d‐band center of Fe closer to the Fermi level, thereby enhancing sodium ions adsorption energy. Consequently, the obtained electrode material achieves a superior gravimetric adsorption capacity of 121.1 mg g
−1
and attractive cyclic durability. The adsorption capacity is highly competitive compared to the vast majority of related research works in the field of capacitive deionization. Furthermore, sodium ion adsorption/desorption mechanisms are substantiated through ex situ techniques, revealing dynamic atomic and electronic structure evolutions under operational conditions. This work demonstrates that optimizing sodium ion adsorption via robust d–d orbital modulation enabled by liquid nitrogen quenching treatment is an effective approach for developing efficient capacitive deionization electrode materials.</abstract><doi>10.1002/adfm.202416963</doi><orcidid>https://orcid.org/0000-0002-4405-5260</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-11 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_crossref_primary_10_1002_adfm_202416963 |
source | Wiley Online Library Journals Frontfile Complete |
title | Optimizing Sodium Ion Adsorption Through Robust d–d Orbital Modulation for Efficient Capacitive Deionization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A05%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Sodium%20Ion%20Adsorption%20Through%20Robust%20d%E2%80%93d%20Orbital%20Modulation%20for%20Efficient%20Capacitive%20Deionization&rft.jtitle=Advanced%20functional%20materials&rft.au=Yu,%20Muran&rft.date=2024-11-05&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202416963&rft_dat=%3Ccrossref%3E10_1002_adfm_202416963%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |