Optimizing Sodium Ion Adsorption Through Robust d–d Orbital Modulation for Efficient Capacitive Deionization

Unraveling the fundamental mechanisms of sodium ion adsorption behavior is crucial for guiding the design of electrode materials and enhancing the performance of capacitive deionization systems. Herein, the optimization of sodium ion adsorption is systematically investigated through the robust d–d o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-11
Hauptverfasser: Yu, Muran, Li, Daqing, Sui, Guozhe, Guo, Dongxuan, Chu, Dawei, Li, Yue, Chai, Dong‐Feng, Li, Jinlong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Advanced functional materials
container_volume
creator Yu, Muran
Li, Daqing
Sui, Guozhe
Guo, Dongxuan
Chu, Dawei
Li, Yue
Chai, Dong‐Feng
Li, Jinlong
description Unraveling the fundamental mechanisms of sodium ion adsorption behavior is crucial for guiding the design of electrode materials and enhancing the performance of capacitive deionization systems. Herein, the optimization of sodium ion adsorption is systematically investigated through the robust d–d orbital interactions within zinc‐doped iron carbide, facilitated by a novel liquid nitrogen quenching treatment. Liquid nitrogen quenching treatment can enhance the coordination number, strengthen d–d orbital interactions, promote electron transfer, and shift the d‐band center of Fe closer to the Fermi level, thereby enhancing sodium ions adsorption energy. Consequently, the obtained electrode material achieves a superior gravimetric adsorption capacity of 121.1 mg g −1 and attractive cyclic durability. The adsorption capacity is highly competitive compared to the vast majority of related research works in the field of capacitive deionization. Furthermore, sodium ion adsorption/desorption mechanisms are substantiated through ex situ techniques, revealing dynamic atomic and electronic structure evolutions under operational conditions. This work demonstrates that optimizing sodium ion adsorption via robust d–d orbital modulation enabled by liquid nitrogen quenching treatment is an effective approach for developing efficient capacitive deionization electrode materials.
doi_str_mv 10.1002/adfm.202416963
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202416963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202416963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c164t-516eadd2e4cbdb0fd5bce0675c03c8a85af22e0386711b5ad302d47f478a51563</originalsourceid><addsrcrecordid>eNo9kN1KwzAcxYMoOKe3XucFOvNPmrRejjl1MBnoBO9Kmo8t0jYlaQV35Tv4hj6J3ZRdnQPncOD8ELoGMgFC6I3Utp5QQlMQt4KdoBEIEAkjND89eng7RxcxvhMCWcbSEWpWbedqt3PNBr947foaL3yDpzr6MCSDXW-D7zdb_OzLPnZY_3x9a7wKpetkhZ-87it56Fkf8Nxap5xpOjyTrVSucx8G35khdrtD6xKdWVlFc_WvY_R6P1_PHpPl6mExmy4TBSLtEg7CSK2pSVWpS2I1L5UhIuOKMJXLnEtLqSEsFxlAyaUeXuo0s2mWSw5csDGa_O2q4GMMxhZtcLUMnwWQYk-r2NMqjrTYL_mVYSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimizing Sodium Ion Adsorption Through Robust d–d Orbital Modulation for Efficient Capacitive Deionization</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yu, Muran ; Li, Daqing ; Sui, Guozhe ; Guo, Dongxuan ; Chu, Dawei ; Li, Yue ; Chai, Dong‐Feng ; Li, Jinlong</creator><creatorcontrib>Yu, Muran ; Li, Daqing ; Sui, Guozhe ; Guo, Dongxuan ; Chu, Dawei ; Li, Yue ; Chai, Dong‐Feng ; Li, Jinlong</creatorcontrib><description>Unraveling the fundamental mechanisms of sodium ion adsorption behavior is crucial for guiding the design of electrode materials and enhancing the performance of capacitive deionization systems. Herein, the optimization of sodium ion adsorption is systematically investigated through the robust d–d orbital interactions within zinc‐doped iron carbide, facilitated by a novel liquid nitrogen quenching treatment. Liquid nitrogen quenching treatment can enhance the coordination number, strengthen d–d orbital interactions, promote electron transfer, and shift the d‐band center of Fe closer to the Fermi level, thereby enhancing sodium ions adsorption energy. Consequently, the obtained electrode material achieves a superior gravimetric adsorption capacity of 121.1 mg g −1 and attractive cyclic durability. The adsorption capacity is highly competitive compared to the vast majority of related research works in the field of capacitive deionization. Furthermore, sodium ion adsorption/desorption mechanisms are substantiated through ex situ techniques, revealing dynamic atomic and electronic structure evolutions under operational conditions. This work demonstrates that optimizing sodium ion adsorption via robust d–d orbital modulation enabled by liquid nitrogen quenching treatment is an effective approach for developing efficient capacitive deionization electrode materials.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202416963</identifier><language>eng</language><ispartof>Advanced functional materials, 2024-11</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c164t-516eadd2e4cbdb0fd5bce0675c03c8a85af22e0386711b5ad302d47f478a51563</cites><orcidid>0000-0002-4405-5260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yu, Muran</creatorcontrib><creatorcontrib>Li, Daqing</creatorcontrib><creatorcontrib>Sui, Guozhe</creatorcontrib><creatorcontrib>Guo, Dongxuan</creatorcontrib><creatorcontrib>Chu, Dawei</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Chai, Dong‐Feng</creatorcontrib><creatorcontrib>Li, Jinlong</creatorcontrib><title>Optimizing Sodium Ion Adsorption Through Robust d–d Orbital Modulation for Efficient Capacitive Deionization</title><title>Advanced functional materials</title><description>Unraveling the fundamental mechanisms of sodium ion adsorption behavior is crucial for guiding the design of electrode materials and enhancing the performance of capacitive deionization systems. Herein, the optimization of sodium ion adsorption is systematically investigated through the robust d–d orbital interactions within zinc‐doped iron carbide, facilitated by a novel liquid nitrogen quenching treatment. Liquid nitrogen quenching treatment can enhance the coordination number, strengthen d–d orbital interactions, promote electron transfer, and shift the d‐band center of Fe closer to the Fermi level, thereby enhancing sodium ions adsorption energy. Consequently, the obtained electrode material achieves a superior gravimetric adsorption capacity of 121.1 mg g −1 and attractive cyclic durability. The adsorption capacity is highly competitive compared to the vast majority of related research works in the field of capacitive deionization. Furthermore, sodium ion adsorption/desorption mechanisms are substantiated through ex situ techniques, revealing dynamic atomic and electronic structure evolutions under operational conditions. This work demonstrates that optimizing sodium ion adsorption via robust d–d orbital modulation enabled by liquid nitrogen quenching treatment is an effective approach for developing efficient capacitive deionization electrode materials.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kN1KwzAcxYMoOKe3XucFOvNPmrRejjl1MBnoBO9Kmo8t0jYlaQV35Tv4hj6J3ZRdnQPncOD8ELoGMgFC6I3Utp5QQlMQt4KdoBEIEAkjND89eng7RxcxvhMCWcbSEWpWbedqt3PNBr947foaL3yDpzr6MCSDXW-D7zdb_OzLPnZY_3x9a7wKpetkhZ-87it56Fkf8Nxap5xpOjyTrVSucx8G35khdrtD6xKdWVlFc_WvY_R6P1_PHpPl6mExmy4TBSLtEg7CSK2pSVWpS2I1L5UhIuOKMJXLnEtLqSEsFxlAyaUeXuo0s2mWSw5csDGa_O2q4GMMxhZtcLUMnwWQYk-r2NMqjrTYL_mVYSg</recordid><startdate>20241105</startdate><enddate>20241105</enddate><creator>Yu, Muran</creator><creator>Li, Daqing</creator><creator>Sui, Guozhe</creator><creator>Guo, Dongxuan</creator><creator>Chu, Dawei</creator><creator>Li, Yue</creator><creator>Chai, Dong‐Feng</creator><creator>Li, Jinlong</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4405-5260</orcidid></search><sort><creationdate>20241105</creationdate><title>Optimizing Sodium Ion Adsorption Through Robust d–d Orbital Modulation for Efficient Capacitive Deionization</title><author>Yu, Muran ; Li, Daqing ; Sui, Guozhe ; Guo, Dongxuan ; Chu, Dawei ; Li, Yue ; Chai, Dong‐Feng ; Li, Jinlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c164t-516eadd2e4cbdb0fd5bce0675c03c8a85af22e0386711b5ad302d47f478a51563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Muran</creatorcontrib><creatorcontrib>Li, Daqing</creatorcontrib><creatorcontrib>Sui, Guozhe</creatorcontrib><creatorcontrib>Guo, Dongxuan</creatorcontrib><creatorcontrib>Chu, Dawei</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Chai, Dong‐Feng</creatorcontrib><creatorcontrib>Li, Jinlong</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Muran</au><au>Li, Daqing</au><au>Sui, Guozhe</au><au>Guo, Dongxuan</au><au>Chu, Dawei</au><au>Li, Yue</au><au>Chai, Dong‐Feng</au><au>Li, Jinlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Sodium Ion Adsorption Through Robust d–d Orbital Modulation for Efficient Capacitive Deionization</atitle><jtitle>Advanced functional materials</jtitle><date>2024-11-05</date><risdate>2024</risdate><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Unraveling the fundamental mechanisms of sodium ion adsorption behavior is crucial for guiding the design of electrode materials and enhancing the performance of capacitive deionization systems. Herein, the optimization of sodium ion adsorption is systematically investigated through the robust d–d orbital interactions within zinc‐doped iron carbide, facilitated by a novel liquid nitrogen quenching treatment. Liquid nitrogen quenching treatment can enhance the coordination number, strengthen d–d orbital interactions, promote electron transfer, and shift the d‐band center of Fe closer to the Fermi level, thereby enhancing sodium ions adsorption energy. Consequently, the obtained electrode material achieves a superior gravimetric adsorption capacity of 121.1 mg g −1 and attractive cyclic durability. The adsorption capacity is highly competitive compared to the vast majority of related research works in the field of capacitive deionization. Furthermore, sodium ion adsorption/desorption mechanisms are substantiated through ex situ techniques, revealing dynamic atomic and electronic structure evolutions under operational conditions. This work demonstrates that optimizing sodium ion adsorption via robust d–d orbital modulation enabled by liquid nitrogen quenching treatment is an effective approach for developing efficient capacitive deionization electrode materials.</abstract><doi>10.1002/adfm.202416963</doi><orcidid>https://orcid.org/0000-0002-4405-5260</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-11
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_202416963
source Wiley Online Library Journals Frontfile Complete
title Optimizing Sodium Ion Adsorption Through Robust d–d Orbital Modulation for Efficient Capacitive Deionization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A05%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Sodium%20Ion%20Adsorption%20Through%20Robust%20d%E2%80%93d%20Orbital%20Modulation%20for%20Efficient%20Capacitive%20Deionization&rft.jtitle=Advanced%20functional%20materials&rft.au=Yu,%20Muran&rft.date=2024-11-05&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202416963&rft_dat=%3Ccrossref%3E10_1002_adfm_202416963%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true