Achieving Highly Durable Intermetallic PtMn 3 N Electrocatalyst via the Strong Metal‐N Bonds toward Oxygen Reduction Reaction

Pt‐based intermetallic compounds have been considered promising electrocatalysts in the practical applications of fuel cells; however, the development of Pt‐based catalysts that meet performance targets of high activity, maximized stability, and low cost remains a huge challenge. Herein, an atomical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-10
Hauptverfasser: Liang, Jinhui, Pan, Xiankai, Zeng, Binwen, Zhong, Chengzhi, Zhang, Longhai, Zhang, Jiaxi, Song, Huiyu, Du, Li, Liao, Shijun, Cui, Zhiming
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Advanced functional materials
container_volume
creator Liang, Jinhui
Pan, Xiankai
Zeng, Binwen
Zhong, Chengzhi
Zhang, Longhai
Zhang, Jiaxi
Song, Huiyu
Du, Li
Liao, Shijun
Cui, Zhiming
description Pt‐based intermetallic compounds have been considered promising electrocatalysts in the practical applications of fuel cells; however, the development of Pt‐based catalysts that meet performance targets of high activity, maximized stability, and low cost remains a huge challenge. Herein, an atomically ordered and low‐Pt intermetallic nitride (PtMn 3 N) catalyst are synthesized consisting of a strained Pt shell and PtMn 3 N core on carbon support via the KCl‐matrix protection strategy. The PtMn 3 N catalyst represents a high mass activity of 0.70 A mg Pt −1 at 0.9 V and a specific activity degradation of 4.2% after 5000 potential cycles for the oxygen reduction reaction (ORR) in rotating disk electrode (RDE) testing, which substantially outperformed commercial Pt/C (0.25 A mg Pt −1 and 17.4%). Density functional theory calculations reveal that the introduction of Mn elements to the Pt lattice is beneficial to produce appropriate compressive strain to weaken the binding energy of oxygen species and the introduction of N elements to promote the strong metal‐N interactions is conducive to alleviating the dissolution of metal atoms, allowing for displaying the prominent durability. This work provides an effective strategy of N‐doped Pt‐based intermetallic compounds to enhance the corrosion resistance of 3d transition metals and to enhance the ORR performance.
doi_str_mv 10.1002/adfm.202414790
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202414790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202414790</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_adfm_2024147903</originalsourceid><addsrcrecordid>eNqVj01OwzAQhS0EEqWwZT0XaBgnUQNLforaRUsFLNhZxpkkRo6NbLeQFRyBM3ISEoS6ZzWf5uk96WPslGPCEdMzWVZtkmKa87y4wD024lM-nWSYnu_vmD8dsqMQXhB5UWT5iH1cqkbTVtsa5rpuTAc3Gy-fDcHCRvItRWmMVrCOSwsZrGBmSEXvlOyDLkTYagmxIXjon_3Icih8f36t4MrZMkB0b9KXcPfe1WThnsqNitoNJH_hmB1U0gQ6-btjltzOHq_nE-VdCJ4q8ep1K30nOIpBUwyaYqeZ_bvwA14yXWU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Achieving Highly Durable Intermetallic PtMn 3 N Electrocatalyst via the Strong Metal‐N Bonds toward Oxygen Reduction Reaction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liang, Jinhui ; Pan, Xiankai ; Zeng, Binwen ; Zhong, Chengzhi ; Zhang, Longhai ; Zhang, Jiaxi ; Song, Huiyu ; Du, Li ; Liao, Shijun ; Cui, Zhiming</creator><creatorcontrib>Liang, Jinhui ; Pan, Xiankai ; Zeng, Binwen ; Zhong, Chengzhi ; Zhang, Longhai ; Zhang, Jiaxi ; Song, Huiyu ; Du, Li ; Liao, Shijun ; Cui, Zhiming</creatorcontrib><description>Pt‐based intermetallic compounds have been considered promising electrocatalysts in the practical applications of fuel cells; however, the development of Pt‐based catalysts that meet performance targets of high activity, maximized stability, and low cost remains a huge challenge. Herein, an atomically ordered and low‐Pt intermetallic nitride (PtMn 3 N) catalyst are synthesized consisting of a strained Pt shell and PtMn 3 N core on carbon support via the KCl‐matrix protection strategy. The PtMn 3 N catalyst represents a high mass activity of 0.70 A mg Pt −1 at 0.9 V and a specific activity degradation of 4.2% after 5000 potential cycles for the oxygen reduction reaction (ORR) in rotating disk electrode (RDE) testing, which substantially outperformed commercial Pt/C (0.25 A mg Pt −1 and 17.4%). Density functional theory calculations reveal that the introduction of Mn elements to the Pt lattice is beneficial to produce appropriate compressive strain to weaken the binding energy of oxygen species and the introduction of N elements to promote the strong metal‐N interactions is conducive to alleviating the dissolution of metal atoms, allowing for displaying the prominent durability. This work provides an effective strategy of N‐doped Pt‐based intermetallic compounds to enhance the corrosion resistance of 3d transition metals and to enhance the ORR performance.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202414790</identifier><language>eng</language><ispartof>Advanced functional materials, 2024-10</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_adfm_2024147903</cites><orcidid>0000-0002-0305-4181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liang, Jinhui</creatorcontrib><creatorcontrib>Pan, Xiankai</creatorcontrib><creatorcontrib>Zeng, Binwen</creatorcontrib><creatorcontrib>Zhong, Chengzhi</creatorcontrib><creatorcontrib>Zhang, Longhai</creatorcontrib><creatorcontrib>Zhang, Jiaxi</creatorcontrib><creatorcontrib>Song, Huiyu</creatorcontrib><creatorcontrib>Du, Li</creatorcontrib><creatorcontrib>Liao, Shijun</creatorcontrib><creatorcontrib>Cui, Zhiming</creatorcontrib><title>Achieving Highly Durable Intermetallic PtMn 3 N Electrocatalyst via the Strong Metal‐N Bonds toward Oxygen Reduction Reaction</title><title>Advanced functional materials</title><description>Pt‐based intermetallic compounds have been considered promising electrocatalysts in the practical applications of fuel cells; however, the development of Pt‐based catalysts that meet performance targets of high activity, maximized stability, and low cost remains a huge challenge. Herein, an atomically ordered and low‐Pt intermetallic nitride (PtMn 3 N) catalyst are synthesized consisting of a strained Pt shell and PtMn 3 N core on carbon support via the KCl‐matrix protection strategy. The PtMn 3 N catalyst represents a high mass activity of 0.70 A mg Pt −1 at 0.9 V and a specific activity degradation of 4.2% after 5000 potential cycles for the oxygen reduction reaction (ORR) in rotating disk electrode (RDE) testing, which substantially outperformed commercial Pt/C (0.25 A mg Pt −1 and 17.4%). Density functional theory calculations reveal that the introduction of Mn elements to the Pt lattice is beneficial to produce appropriate compressive strain to weaken the binding energy of oxygen species and the introduction of N elements to promote the strong metal‐N interactions is conducive to alleviating the dissolution of metal atoms, allowing for displaying the prominent durability. This work provides an effective strategy of N‐doped Pt‐based intermetallic compounds to enhance the corrosion resistance of 3d transition metals and to enhance the ORR performance.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVj01OwzAQhS0EEqWwZT0XaBgnUQNLforaRUsFLNhZxpkkRo6NbLeQFRyBM3ISEoS6ZzWf5uk96WPslGPCEdMzWVZtkmKa87y4wD024lM-nWSYnu_vmD8dsqMQXhB5UWT5iH1cqkbTVtsa5rpuTAc3Gy-fDcHCRvItRWmMVrCOSwsZrGBmSEXvlOyDLkTYagmxIXjon_3Icih8f36t4MrZMkB0b9KXcPfe1WThnsqNitoNJH_hmB1U0gQ6-btjltzOHq_nE-VdCJ4q8ep1K30nOIpBUwyaYqeZ_bvwA14yXWU</recordid><startdate>20241004</startdate><enddate>20241004</enddate><creator>Liang, Jinhui</creator><creator>Pan, Xiankai</creator><creator>Zeng, Binwen</creator><creator>Zhong, Chengzhi</creator><creator>Zhang, Longhai</creator><creator>Zhang, Jiaxi</creator><creator>Song, Huiyu</creator><creator>Du, Li</creator><creator>Liao, Shijun</creator><creator>Cui, Zhiming</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0305-4181</orcidid></search><sort><creationdate>20241004</creationdate><title>Achieving Highly Durable Intermetallic PtMn 3 N Electrocatalyst via the Strong Metal‐N Bonds toward Oxygen Reduction Reaction</title><author>Liang, Jinhui ; Pan, Xiankai ; Zeng, Binwen ; Zhong, Chengzhi ; Zhang, Longhai ; Zhang, Jiaxi ; Song, Huiyu ; Du, Li ; Liao, Shijun ; Cui, Zhiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_adfm_2024147903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Jinhui</creatorcontrib><creatorcontrib>Pan, Xiankai</creatorcontrib><creatorcontrib>Zeng, Binwen</creatorcontrib><creatorcontrib>Zhong, Chengzhi</creatorcontrib><creatorcontrib>Zhang, Longhai</creatorcontrib><creatorcontrib>Zhang, Jiaxi</creatorcontrib><creatorcontrib>Song, Huiyu</creatorcontrib><creatorcontrib>Du, Li</creatorcontrib><creatorcontrib>Liao, Shijun</creatorcontrib><creatorcontrib>Cui, Zhiming</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Jinhui</au><au>Pan, Xiankai</au><au>Zeng, Binwen</au><au>Zhong, Chengzhi</au><au>Zhang, Longhai</au><au>Zhang, Jiaxi</au><au>Song, Huiyu</au><au>Du, Li</au><au>Liao, Shijun</au><au>Cui, Zhiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving Highly Durable Intermetallic PtMn 3 N Electrocatalyst via the Strong Metal‐N Bonds toward Oxygen Reduction Reaction</atitle><jtitle>Advanced functional materials</jtitle><date>2024-10-04</date><risdate>2024</risdate><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Pt‐based intermetallic compounds have been considered promising electrocatalysts in the practical applications of fuel cells; however, the development of Pt‐based catalysts that meet performance targets of high activity, maximized stability, and low cost remains a huge challenge. Herein, an atomically ordered and low‐Pt intermetallic nitride (PtMn 3 N) catalyst are synthesized consisting of a strained Pt shell and PtMn 3 N core on carbon support via the KCl‐matrix protection strategy. The PtMn 3 N catalyst represents a high mass activity of 0.70 A mg Pt −1 at 0.9 V and a specific activity degradation of 4.2% after 5000 potential cycles for the oxygen reduction reaction (ORR) in rotating disk electrode (RDE) testing, which substantially outperformed commercial Pt/C (0.25 A mg Pt −1 and 17.4%). Density functional theory calculations reveal that the introduction of Mn elements to the Pt lattice is beneficial to produce appropriate compressive strain to weaken the binding energy of oxygen species and the introduction of N elements to promote the strong metal‐N interactions is conducive to alleviating the dissolution of metal atoms, allowing for displaying the prominent durability. This work provides an effective strategy of N‐doped Pt‐based intermetallic compounds to enhance the corrosion resistance of 3d transition metals and to enhance the ORR performance.</abstract><doi>10.1002/adfm.202414790</doi><orcidid>https://orcid.org/0000-0002-0305-4181</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-10
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_202414790
source Wiley Online Library Journals Frontfile Complete
title Achieving Highly Durable Intermetallic PtMn 3 N Electrocatalyst via the Strong Metal‐N Bonds toward Oxygen Reduction Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A33%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20Highly%20Durable%20Intermetallic%20PtMn%203%20N%20Electrocatalyst%20via%20the%20Strong%20Metal%E2%80%90N%20Bonds%20toward%20Oxygen%20Reduction%20Reaction&rft.jtitle=Advanced%20functional%20materials&rft.au=Liang,%20Jinhui&rft.date=2024-10-04&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202414790&rft_dat=%3Ccrossref%3E10_1002_adfm_202414790%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true