Se‐Rich Functionalized FeS x Hollow Nanospheres for Accelerated and Long‐Lasting Sodium Storage
Transition metal sulfides are emerging as promising anode materials for sodium‐ion batteries (SIBs) due to their high theoretical capacity and low cost, their practical application yet face critical issues of sluggish kinetics and poor cycling stability. In this study, a reliable approach is introdu...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-09 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Advanced functional materials |
container_volume | |
creator | Haruna, Baffa Wang, Lina Hu, Xiang Luo, Guangfu Muhammad, Mujtaba Aminu Liu, Yangjie Yu, Jiaqi Abdel‐Aziz, Ahmed Bao, Hongli Wen, Zhenhai |
description | Transition metal sulfides are emerging as promising anode materials for sodium‐ion batteries (SIBs) due to their high theoretical capacity and low cost, their practical application yet face critical issues of sluggish kinetics and poor cycling stability. In this study, a reliable approach is introduced to overcome these challenges by fabrication of Se 0.75 ‐Fe 1‐x S 0.25 @SC hollow nanospheres thanks to the enriched robust Fe─S─C, C─S, and C─Se bonding, which greatly benefit for enhancing both reaction kinetics and structural stability. Kinetic study combining with in situ characterization reveals that the incorporation of rich‐Se into FeS x induces the formation of cationic Fe and Se vacancies, leading to abundant sites and optimized path for sodium storage. Density functional theory calculations also demonstrate how Se‐rich engineering weakens carbonaceous polar C─S─Fe bonds and accelerates reaction dynamics. The as‐prepared Se 0.75 ‐Fe 1‐x S 0.25 @SC can deliver a high reversible capacity of 515 mAh g −1 at 2 A g −1 over 1250 cycles and achieve superior rate capability with maintaining capacity of 418 mAh g −1 at 10 A g −1 . This work pioneers the concept of vacancy‐rich functionalized nanostructures, offering a new pathway for designing advanced electrode materials for energy storage devices. |
doi_str_mv | 10.1002/adfm.202414246 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202414246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202414246</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_adfm_2024142463</originalsourceid><addsrcrecordid>eNqVj71uwjAUha2KSoW2K_N9AYLtRIG1qhoxoA6kQzfryrkJrhxfZAf1Z-oj8Iw8SUFC7J3OGc53pE-IqZKZklLPsWn7TEtdqEIX5Y0Yq1KVs1zq5eja1fudmKT0IaVaLPJiLGxNx9_DxtktVPtgB8cBvfuhBiqq4QtW7D1_wisGTrstRUrQcoQna8lTxOE0xNDAmkN3-lljGlzooObG7XuoB47Y0YO4bdEnerzkvciql7fn1cxGTilSa3bR9Ri_jZLmrGLOKuaqkv8b-AOlbVQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Se‐Rich Functionalized FeS x Hollow Nanospheres for Accelerated and Long‐Lasting Sodium Storage</title><source>Wiley Online Library All Journals</source><creator>Haruna, Baffa ; Wang, Lina ; Hu, Xiang ; Luo, Guangfu ; Muhammad, Mujtaba Aminu ; Liu, Yangjie ; Yu, Jiaqi ; Abdel‐Aziz, Ahmed ; Bao, Hongli ; Wen, Zhenhai</creator><creatorcontrib>Haruna, Baffa ; Wang, Lina ; Hu, Xiang ; Luo, Guangfu ; Muhammad, Mujtaba Aminu ; Liu, Yangjie ; Yu, Jiaqi ; Abdel‐Aziz, Ahmed ; Bao, Hongli ; Wen, Zhenhai</creatorcontrib><description>Transition metal sulfides are emerging as promising anode materials for sodium‐ion batteries (SIBs) due to their high theoretical capacity and low cost, their practical application yet face critical issues of sluggish kinetics and poor cycling stability. In this study, a reliable approach is introduced to overcome these challenges by fabrication of Se 0.75 ‐Fe 1‐x S 0.25 @SC hollow nanospheres thanks to the enriched robust Fe─S─C, C─S, and C─Se bonding, which greatly benefit for enhancing both reaction kinetics and structural stability. Kinetic study combining with in situ characterization reveals that the incorporation of rich‐Se into FeS x induces the formation of cationic Fe and Se vacancies, leading to abundant sites and optimized path for sodium storage. Density functional theory calculations also demonstrate how Se‐rich engineering weakens carbonaceous polar C─S─Fe bonds and accelerates reaction dynamics. The as‐prepared Se 0.75 ‐Fe 1‐x S 0.25 @SC can deliver a high reversible capacity of 515 mAh g −1 at 2 A g −1 over 1250 cycles and achieve superior rate capability with maintaining capacity of 418 mAh g −1 at 10 A g −1 . This work pioneers the concept of vacancy‐rich functionalized nanostructures, offering a new pathway for designing advanced electrode materials for energy storage devices.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202414246</identifier><language>eng</language><ispartof>Advanced functional materials, 2024-09</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_adfm_2024142463</cites><orcidid>0000-0002-2340-9525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Haruna, Baffa</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><creatorcontrib>Hu, Xiang</creatorcontrib><creatorcontrib>Luo, Guangfu</creatorcontrib><creatorcontrib>Muhammad, Mujtaba Aminu</creatorcontrib><creatorcontrib>Liu, Yangjie</creatorcontrib><creatorcontrib>Yu, Jiaqi</creatorcontrib><creatorcontrib>Abdel‐Aziz, Ahmed</creatorcontrib><creatorcontrib>Bao, Hongli</creatorcontrib><creatorcontrib>Wen, Zhenhai</creatorcontrib><title>Se‐Rich Functionalized FeS x Hollow Nanospheres for Accelerated and Long‐Lasting Sodium Storage</title><title>Advanced functional materials</title><description>Transition metal sulfides are emerging as promising anode materials for sodium‐ion batteries (SIBs) due to their high theoretical capacity and low cost, their practical application yet face critical issues of sluggish kinetics and poor cycling stability. In this study, a reliable approach is introduced to overcome these challenges by fabrication of Se 0.75 ‐Fe 1‐x S 0.25 @SC hollow nanospheres thanks to the enriched robust Fe─S─C, C─S, and C─Se bonding, which greatly benefit for enhancing both reaction kinetics and structural stability. Kinetic study combining with in situ characterization reveals that the incorporation of rich‐Se into FeS x induces the formation of cationic Fe and Se vacancies, leading to abundant sites and optimized path for sodium storage. Density functional theory calculations also demonstrate how Se‐rich engineering weakens carbonaceous polar C─S─Fe bonds and accelerates reaction dynamics. The as‐prepared Se 0.75 ‐Fe 1‐x S 0.25 @SC can deliver a high reversible capacity of 515 mAh g −1 at 2 A g −1 over 1250 cycles and achieve superior rate capability with maintaining capacity of 418 mAh g −1 at 10 A g −1 . This work pioneers the concept of vacancy‐rich functionalized nanostructures, offering a new pathway for designing advanced electrode materials for energy storage devices.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVj71uwjAUha2KSoW2K_N9AYLtRIG1qhoxoA6kQzfryrkJrhxfZAf1Z-oj8Iw8SUFC7J3OGc53pE-IqZKZklLPsWn7TEtdqEIX5Y0Yq1KVs1zq5eja1fudmKT0IaVaLPJiLGxNx9_DxtktVPtgB8cBvfuhBiqq4QtW7D1_wisGTrstRUrQcoQna8lTxOE0xNDAmkN3-lljGlzooObG7XuoB47Y0YO4bdEnerzkvciql7fn1cxGTilSa3bR9Ri_jZLmrGLOKuaqkv8b-AOlbVQY</recordid><startdate>20240912</startdate><enddate>20240912</enddate><creator>Haruna, Baffa</creator><creator>Wang, Lina</creator><creator>Hu, Xiang</creator><creator>Luo, Guangfu</creator><creator>Muhammad, Mujtaba Aminu</creator><creator>Liu, Yangjie</creator><creator>Yu, Jiaqi</creator><creator>Abdel‐Aziz, Ahmed</creator><creator>Bao, Hongli</creator><creator>Wen, Zhenhai</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2340-9525</orcidid></search><sort><creationdate>20240912</creationdate><title>Se‐Rich Functionalized FeS x Hollow Nanospheres for Accelerated and Long‐Lasting Sodium Storage</title><author>Haruna, Baffa ; Wang, Lina ; Hu, Xiang ; Luo, Guangfu ; Muhammad, Mujtaba Aminu ; Liu, Yangjie ; Yu, Jiaqi ; Abdel‐Aziz, Ahmed ; Bao, Hongli ; Wen, Zhenhai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_adfm_2024142463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haruna, Baffa</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><creatorcontrib>Hu, Xiang</creatorcontrib><creatorcontrib>Luo, Guangfu</creatorcontrib><creatorcontrib>Muhammad, Mujtaba Aminu</creatorcontrib><creatorcontrib>Liu, Yangjie</creatorcontrib><creatorcontrib>Yu, Jiaqi</creatorcontrib><creatorcontrib>Abdel‐Aziz, Ahmed</creatorcontrib><creatorcontrib>Bao, Hongli</creatorcontrib><creatorcontrib>Wen, Zhenhai</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haruna, Baffa</au><au>Wang, Lina</au><au>Hu, Xiang</au><au>Luo, Guangfu</au><au>Muhammad, Mujtaba Aminu</au><au>Liu, Yangjie</au><au>Yu, Jiaqi</au><au>Abdel‐Aziz, Ahmed</au><au>Bao, Hongli</au><au>Wen, Zhenhai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Se‐Rich Functionalized FeS x Hollow Nanospheres for Accelerated and Long‐Lasting Sodium Storage</atitle><jtitle>Advanced functional materials</jtitle><date>2024-09-12</date><risdate>2024</risdate><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Transition metal sulfides are emerging as promising anode materials for sodium‐ion batteries (SIBs) due to their high theoretical capacity and low cost, their practical application yet face critical issues of sluggish kinetics and poor cycling stability. In this study, a reliable approach is introduced to overcome these challenges by fabrication of Se 0.75 ‐Fe 1‐x S 0.25 @SC hollow nanospheres thanks to the enriched robust Fe─S─C, C─S, and C─Se bonding, which greatly benefit for enhancing both reaction kinetics and structural stability. Kinetic study combining with in situ characterization reveals that the incorporation of rich‐Se into FeS x induces the formation of cationic Fe and Se vacancies, leading to abundant sites and optimized path for sodium storage. Density functional theory calculations also demonstrate how Se‐rich engineering weakens carbonaceous polar C─S─Fe bonds and accelerates reaction dynamics. The as‐prepared Se 0.75 ‐Fe 1‐x S 0.25 @SC can deliver a high reversible capacity of 515 mAh g −1 at 2 A g −1 over 1250 cycles and achieve superior rate capability with maintaining capacity of 418 mAh g −1 at 10 A g −1 . This work pioneers the concept of vacancy‐rich functionalized nanostructures, offering a new pathway for designing advanced electrode materials for energy storage devices.</abstract><doi>10.1002/adfm.202414246</doi><orcidid>https://orcid.org/0000-0002-2340-9525</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-09 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_crossref_primary_10_1002_adfm_202414246 |
source | Wiley Online Library All Journals |
title | Se‐Rich Functionalized FeS x Hollow Nanospheres for Accelerated and Long‐Lasting Sodium Storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A03%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Se%E2%80%90Rich%20Functionalized%20FeS%20x%20Hollow%20Nanospheres%20for%20Accelerated%20and%20Long%E2%80%90Lasting%20Sodium%20Storage&rft.jtitle=Advanced%20functional%20materials&rft.au=Haruna,%20Baffa&rft.date=2024-09-12&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202414246&rft_dat=%3Ccrossref%3E10_1002_adfm_202414246%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |