Se‐Rich Functionalized FeS x Hollow Nanospheres for Accelerated and Long‐Lasting Sodium Storage

Transition metal sulfides are emerging as promising anode materials for sodium‐ion batteries (SIBs) due to their high theoretical capacity and low cost, their practical application yet face critical issues of sluggish kinetics and poor cycling stability. In this study, a reliable approach is introdu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-09
Hauptverfasser: Haruna, Baffa, Wang, Lina, Hu, Xiang, Luo, Guangfu, Muhammad, Mujtaba Aminu, Liu, Yangjie, Yu, Jiaqi, Abdel‐Aziz, Ahmed, Bao, Hongli, Wen, Zhenhai
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Advanced functional materials
container_volume
creator Haruna, Baffa
Wang, Lina
Hu, Xiang
Luo, Guangfu
Muhammad, Mujtaba Aminu
Liu, Yangjie
Yu, Jiaqi
Abdel‐Aziz, Ahmed
Bao, Hongli
Wen, Zhenhai
description Transition metal sulfides are emerging as promising anode materials for sodium‐ion batteries (SIBs) due to their high theoretical capacity and low cost, their practical application yet face critical issues of sluggish kinetics and poor cycling stability. In this study, a reliable approach is introduced to overcome these challenges by fabrication of Se 0.75 ‐Fe 1‐x S 0.25 @SC hollow nanospheres thanks to the enriched robust Fe─S─C, C─S, and C─Se bonding, which greatly benefit for enhancing both reaction kinetics and structural stability. Kinetic study combining with in situ characterization reveals that the incorporation of rich‐Se into FeS x induces the formation of cationic Fe and Se vacancies, leading to abundant sites and optimized path for sodium storage. Density functional theory calculations also demonstrate how Se‐rich engineering weakens carbonaceous polar C─S─Fe bonds and accelerates reaction dynamics. The as‐prepared Se 0.75 ‐Fe 1‐x S 0.25 @SC can deliver a high reversible capacity of 515 mAh g −1 at 2 A g −1 over 1250 cycles and achieve superior rate capability with maintaining capacity of 418 mAh g −1 at 10 A g −1 . This work pioneers the concept of vacancy‐rich functionalized nanostructures, offering a new pathway for designing advanced electrode materials for energy storage devices.
doi_str_mv 10.1002/adfm.202414246
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202414246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202414246</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_adfm_2024142463</originalsourceid><addsrcrecordid>eNqVj71uwjAUha2KSoW2K_N9AYLtRIG1qhoxoA6kQzfryrkJrhxfZAf1Z-oj8Iw8SUFC7J3OGc53pE-IqZKZklLPsWn7TEtdqEIX5Y0Yq1KVs1zq5eja1fudmKT0IaVaLPJiLGxNx9_DxtktVPtgB8cBvfuhBiqq4QtW7D1_wisGTrstRUrQcoQna8lTxOE0xNDAmkN3-lljGlzooObG7XuoB47Y0YO4bdEnerzkvciql7fn1cxGTilSa3bR9Ri_jZLmrGLOKuaqkv8b-AOlbVQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Se‐Rich Functionalized FeS x Hollow Nanospheres for Accelerated and Long‐Lasting Sodium Storage</title><source>Wiley Online Library All Journals</source><creator>Haruna, Baffa ; Wang, Lina ; Hu, Xiang ; Luo, Guangfu ; Muhammad, Mujtaba Aminu ; Liu, Yangjie ; Yu, Jiaqi ; Abdel‐Aziz, Ahmed ; Bao, Hongli ; Wen, Zhenhai</creator><creatorcontrib>Haruna, Baffa ; Wang, Lina ; Hu, Xiang ; Luo, Guangfu ; Muhammad, Mujtaba Aminu ; Liu, Yangjie ; Yu, Jiaqi ; Abdel‐Aziz, Ahmed ; Bao, Hongli ; Wen, Zhenhai</creatorcontrib><description>Transition metal sulfides are emerging as promising anode materials for sodium‐ion batteries (SIBs) due to their high theoretical capacity and low cost, their practical application yet face critical issues of sluggish kinetics and poor cycling stability. In this study, a reliable approach is introduced to overcome these challenges by fabrication of Se 0.75 ‐Fe 1‐x S 0.25 @SC hollow nanospheres thanks to the enriched robust Fe─S─C, C─S, and C─Se bonding, which greatly benefit for enhancing both reaction kinetics and structural stability. Kinetic study combining with in situ characterization reveals that the incorporation of rich‐Se into FeS x induces the formation of cationic Fe and Se vacancies, leading to abundant sites and optimized path for sodium storage. Density functional theory calculations also demonstrate how Se‐rich engineering weakens carbonaceous polar C─S─Fe bonds and accelerates reaction dynamics. The as‐prepared Se 0.75 ‐Fe 1‐x S 0.25 @SC can deliver a high reversible capacity of 515 mAh g −1 at 2 A g −1 over 1250 cycles and achieve superior rate capability with maintaining capacity of 418 mAh g −1 at 10 A g −1 . This work pioneers the concept of vacancy‐rich functionalized nanostructures, offering a new pathway for designing advanced electrode materials for energy storage devices.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202414246</identifier><language>eng</language><ispartof>Advanced functional materials, 2024-09</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_adfm_2024142463</cites><orcidid>0000-0002-2340-9525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Haruna, Baffa</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><creatorcontrib>Hu, Xiang</creatorcontrib><creatorcontrib>Luo, Guangfu</creatorcontrib><creatorcontrib>Muhammad, Mujtaba Aminu</creatorcontrib><creatorcontrib>Liu, Yangjie</creatorcontrib><creatorcontrib>Yu, Jiaqi</creatorcontrib><creatorcontrib>Abdel‐Aziz, Ahmed</creatorcontrib><creatorcontrib>Bao, Hongli</creatorcontrib><creatorcontrib>Wen, Zhenhai</creatorcontrib><title>Se‐Rich Functionalized FeS x Hollow Nanospheres for Accelerated and Long‐Lasting Sodium Storage</title><title>Advanced functional materials</title><description>Transition metal sulfides are emerging as promising anode materials for sodium‐ion batteries (SIBs) due to their high theoretical capacity and low cost, their practical application yet face critical issues of sluggish kinetics and poor cycling stability. In this study, a reliable approach is introduced to overcome these challenges by fabrication of Se 0.75 ‐Fe 1‐x S 0.25 @SC hollow nanospheres thanks to the enriched robust Fe─S─C, C─S, and C─Se bonding, which greatly benefit for enhancing both reaction kinetics and structural stability. Kinetic study combining with in situ characterization reveals that the incorporation of rich‐Se into FeS x induces the formation of cationic Fe and Se vacancies, leading to abundant sites and optimized path for sodium storage. Density functional theory calculations also demonstrate how Se‐rich engineering weakens carbonaceous polar C─S─Fe bonds and accelerates reaction dynamics. The as‐prepared Se 0.75 ‐Fe 1‐x S 0.25 @SC can deliver a high reversible capacity of 515 mAh g −1 at 2 A g −1 over 1250 cycles and achieve superior rate capability with maintaining capacity of 418 mAh g −1 at 10 A g −1 . This work pioneers the concept of vacancy‐rich functionalized nanostructures, offering a new pathway for designing advanced electrode materials for energy storage devices.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVj71uwjAUha2KSoW2K_N9AYLtRIG1qhoxoA6kQzfryrkJrhxfZAf1Z-oj8Iw8SUFC7J3OGc53pE-IqZKZklLPsWn7TEtdqEIX5Y0Yq1KVs1zq5eja1fudmKT0IaVaLPJiLGxNx9_DxtktVPtgB8cBvfuhBiqq4QtW7D1_wisGTrstRUrQcoQna8lTxOE0xNDAmkN3-lljGlzooObG7XuoB47Y0YO4bdEnerzkvciql7fn1cxGTilSa3bR9Ri_jZLmrGLOKuaqkv8b-AOlbVQY</recordid><startdate>20240912</startdate><enddate>20240912</enddate><creator>Haruna, Baffa</creator><creator>Wang, Lina</creator><creator>Hu, Xiang</creator><creator>Luo, Guangfu</creator><creator>Muhammad, Mujtaba Aminu</creator><creator>Liu, Yangjie</creator><creator>Yu, Jiaqi</creator><creator>Abdel‐Aziz, Ahmed</creator><creator>Bao, Hongli</creator><creator>Wen, Zhenhai</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2340-9525</orcidid></search><sort><creationdate>20240912</creationdate><title>Se‐Rich Functionalized FeS x Hollow Nanospheres for Accelerated and Long‐Lasting Sodium Storage</title><author>Haruna, Baffa ; Wang, Lina ; Hu, Xiang ; Luo, Guangfu ; Muhammad, Mujtaba Aminu ; Liu, Yangjie ; Yu, Jiaqi ; Abdel‐Aziz, Ahmed ; Bao, Hongli ; Wen, Zhenhai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_adfm_2024142463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haruna, Baffa</creatorcontrib><creatorcontrib>Wang, Lina</creatorcontrib><creatorcontrib>Hu, Xiang</creatorcontrib><creatorcontrib>Luo, Guangfu</creatorcontrib><creatorcontrib>Muhammad, Mujtaba Aminu</creatorcontrib><creatorcontrib>Liu, Yangjie</creatorcontrib><creatorcontrib>Yu, Jiaqi</creatorcontrib><creatorcontrib>Abdel‐Aziz, Ahmed</creatorcontrib><creatorcontrib>Bao, Hongli</creatorcontrib><creatorcontrib>Wen, Zhenhai</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haruna, Baffa</au><au>Wang, Lina</au><au>Hu, Xiang</au><au>Luo, Guangfu</au><au>Muhammad, Mujtaba Aminu</au><au>Liu, Yangjie</au><au>Yu, Jiaqi</au><au>Abdel‐Aziz, Ahmed</au><au>Bao, Hongli</au><au>Wen, Zhenhai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Se‐Rich Functionalized FeS x Hollow Nanospheres for Accelerated and Long‐Lasting Sodium Storage</atitle><jtitle>Advanced functional materials</jtitle><date>2024-09-12</date><risdate>2024</risdate><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Transition metal sulfides are emerging as promising anode materials for sodium‐ion batteries (SIBs) due to their high theoretical capacity and low cost, their practical application yet face critical issues of sluggish kinetics and poor cycling stability. In this study, a reliable approach is introduced to overcome these challenges by fabrication of Se 0.75 ‐Fe 1‐x S 0.25 @SC hollow nanospheres thanks to the enriched robust Fe─S─C, C─S, and C─Se bonding, which greatly benefit for enhancing both reaction kinetics and structural stability. Kinetic study combining with in situ characterization reveals that the incorporation of rich‐Se into FeS x induces the formation of cationic Fe and Se vacancies, leading to abundant sites and optimized path for sodium storage. Density functional theory calculations also demonstrate how Se‐rich engineering weakens carbonaceous polar C─S─Fe bonds and accelerates reaction dynamics. The as‐prepared Se 0.75 ‐Fe 1‐x S 0.25 @SC can deliver a high reversible capacity of 515 mAh g −1 at 2 A g −1 over 1250 cycles and achieve superior rate capability with maintaining capacity of 418 mAh g −1 at 10 A g −1 . This work pioneers the concept of vacancy‐rich functionalized nanostructures, offering a new pathway for designing advanced electrode materials for energy storage devices.</abstract><doi>10.1002/adfm.202414246</doi><orcidid>https://orcid.org/0000-0002-2340-9525</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-09
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_202414246
source Wiley Online Library All Journals
title Se‐Rich Functionalized FeS x Hollow Nanospheres for Accelerated and Long‐Lasting Sodium Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A03%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Se%E2%80%90Rich%20Functionalized%20FeS%20x%20Hollow%20Nanospheres%20for%20Accelerated%20and%20Long%E2%80%90Lasting%20Sodium%20Storage&rft.jtitle=Advanced%20functional%20materials&rft.au=Haruna,%20Baffa&rft.date=2024-09-12&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202414246&rft_dat=%3Ccrossref%3E10_1002_adfm_202414246%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true