Multi‐Photon 3D Laser Micro‐Printed Plastic Scintillators for Applications in Low‐Energy Particle Physics

Plastic scintillators are inexpensive to manufacture and therefore a popular alternative to inorganic crystalline scintillators. For many applications, their advantages outweigh their lower light yield. Additionally, it is easier to structure plastic scintillators with well‐developed processing tech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-10
Hauptverfasser: Weinacker, Jannis, Kalt, Sebastian, Huber, Anton, Gutknecht, Nathanael, Schneider, Jonathan Ludwig Günter, Bojanowski, Niclas Maximilian, Geigle, Tom, Steidl, Markus, Wegener, Martin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Advanced functional materials
container_volume
creator Weinacker, Jannis
Kalt, Sebastian
Huber, Anton
Gutknecht, Nathanael
Schneider, Jonathan Ludwig Günter
Bojanowski, Niclas Maximilian
Geigle, Tom
Steidl, Markus
Wegener, Martin
description Plastic scintillators are inexpensive to manufacture and therefore a popular alternative to inorganic crystalline scintillators. For many applications, their advantages outweigh their lower light yield. Additionally, it is easier to structure plastic scintillators with well‐developed processing techniques which is of growing relevance in modern applications. One technique to structure plastic material is 3D printing, with noteworthy recent advances in one‐photon‐based approaches. However, some applications require high spatial resolution and optically smooth surfaces, which can be achieved by multi‐photon 3D laser micro‐printing. One application example is the improvement of sensitivity of the Karlsruhe Tritium Neutrino (KATRIN) experiment. This improvement can be realized by printing a 3D scintillator structure as an active transverse energy filter directly onto the detector. Herein, the first two‐photon printable plastic scintillator providing a printing resolution in the micrometer regime is presented. Using the benefits of two‐photon grayscale lithography, optical‐grade surfaces are achieved. The light output is estimated to be 930 photons MeV −1 . A prototype structure printed directly on a single‐photon avalanche diode array is demonstrated.
doi_str_mv 10.1002/adfm.202413215
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202413215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202413215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c164t-edf84bb191fa665614dabc14d3afbacfc781136b1cb315af7c4fa2345cae98823</originalsourceid><addsrcrecordid>eNo9kN1KAzEQhYMoWKu3XucFtmaSbHZ7WWr9gRUXVPBumc0mNrLdlCQivfMRfEafxC1Kb-bMOXAG5iPkEtgMGONX2NnNjDMuQXDIj8gEFKhMMF4eH3Z4PSVnMb4zBkUh5IT4h48-uZ-v73rtkx-ouKYVRhPog9PB7_PghmQ6WvcYk9P0SY_e9T0mHyK1PtDFdts7jcn5IVI30Mp_jr3VYMLbjtYYxlZvaL3eRafjOTmx2Edz8a9T8nKzel7eZdXj7f1yUWUalEyZ6Wwp2xbmYFGpXIHssNXjFGhb1FYXJYBQLehWQI620NIiFzLXaOZlycWUzP7ujl_EGIxttsFtMOwaYM0eV7PH1RxwiV_BLmOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi‐Photon 3D Laser Micro‐Printed Plastic Scintillators for Applications in Low‐Energy Particle Physics</title><source>Access via Wiley Online Library</source><creator>Weinacker, Jannis ; Kalt, Sebastian ; Huber, Anton ; Gutknecht, Nathanael ; Schneider, Jonathan Ludwig Günter ; Bojanowski, Niclas Maximilian ; Geigle, Tom ; Steidl, Markus ; Wegener, Martin</creator><creatorcontrib>Weinacker, Jannis ; Kalt, Sebastian ; Huber, Anton ; Gutknecht, Nathanael ; Schneider, Jonathan Ludwig Günter ; Bojanowski, Niclas Maximilian ; Geigle, Tom ; Steidl, Markus ; Wegener, Martin</creatorcontrib><description>Plastic scintillators are inexpensive to manufacture and therefore a popular alternative to inorganic crystalline scintillators. For many applications, their advantages outweigh their lower light yield. Additionally, it is easier to structure plastic scintillators with well‐developed processing techniques which is of growing relevance in modern applications. One technique to structure plastic material is 3D printing, with noteworthy recent advances in one‐photon‐based approaches. However, some applications require high spatial resolution and optically smooth surfaces, which can be achieved by multi‐photon 3D laser micro‐printing. One application example is the improvement of sensitivity of the Karlsruhe Tritium Neutrino (KATRIN) experiment. This improvement can be realized by printing a 3D scintillator structure as an active transverse energy filter directly onto the detector. Herein, the first two‐photon printable plastic scintillator providing a printing resolution in the micrometer regime is presented. Using the benefits of two‐photon grayscale lithography, optical‐grade surfaces are achieved. The light output is estimated to be 930 photons MeV −1 . A prototype structure printed directly on a single‐photon avalanche diode array is demonstrated.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202413215</identifier><language>eng</language><ispartof>Advanced functional materials, 2024-10</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c164t-edf84bb191fa665614dabc14d3afbacfc781136b1cb315af7c4fa2345cae98823</cites><orcidid>0009-0009-2287-3877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Weinacker, Jannis</creatorcontrib><creatorcontrib>Kalt, Sebastian</creatorcontrib><creatorcontrib>Huber, Anton</creatorcontrib><creatorcontrib>Gutknecht, Nathanael</creatorcontrib><creatorcontrib>Schneider, Jonathan Ludwig Günter</creatorcontrib><creatorcontrib>Bojanowski, Niclas Maximilian</creatorcontrib><creatorcontrib>Geigle, Tom</creatorcontrib><creatorcontrib>Steidl, Markus</creatorcontrib><creatorcontrib>Wegener, Martin</creatorcontrib><title>Multi‐Photon 3D Laser Micro‐Printed Plastic Scintillators for Applications in Low‐Energy Particle Physics</title><title>Advanced functional materials</title><description>Plastic scintillators are inexpensive to manufacture and therefore a popular alternative to inorganic crystalline scintillators. For many applications, their advantages outweigh their lower light yield. Additionally, it is easier to structure plastic scintillators with well‐developed processing techniques which is of growing relevance in modern applications. One technique to structure plastic material is 3D printing, with noteworthy recent advances in one‐photon‐based approaches. However, some applications require high spatial resolution and optically smooth surfaces, which can be achieved by multi‐photon 3D laser micro‐printing. One application example is the improvement of sensitivity of the Karlsruhe Tritium Neutrino (KATRIN) experiment. This improvement can be realized by printing a 3D scintillator structure as an active transverse energy filter directly onto the detector. Herein, the first two‐photon printable plastic scintillator providing a printing resolution in the micrometer regime is presented. Using the benefits of two‐photon grayscale lithography, optical‐grade surfaces are achieved. The light output is estimated to be 930 photons MeV −1 . A prototype structure printed directly on a single‐photon avalanche diode array is demonstrated.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kN1KAzEQhYMoWKu3XucFtmaSbHZ7WWr9gRUXVPBumc0mNrLdlCQivfMRfEafxC1Kb-bMOXAG5iPkEtgMGONX2NnNjDMuQXDIj8gEFKhMMF4eH3Z4PSVnMb4zBkUh5IT4h48-uZ-v73rtkx-ouKYVRhPog9PB7_PghmQ6WvcYk9P0SY_e9T0mHyK1PtDFdts7jcn5IVI30Mp_jr3VYMLbjtYYxlZvaL3eRafjOTmx2Edz8a9T8nKzel7eZdXj7f1yUWUalEyZ6Wwp2xbmYFGpXIHssNXjFGhb1FYXJYBQLehWQI620NIiFzLXaOZlycWUzP7ujl_EGIxttsFtMOwaYM0eV7PH1RxwiV_BLmOY</recordid><startdate>20241009</startdate><enddate>20241009</enddate><creator>Weinacker, Jannis</creator><creator>Kalt, Sebastian</creator><creator>Huber, Anton</creator><creator>Gutknecht, Nathanael</creator><creator>Schneider, Jonathan Ludwig Günter</creator><creator>Bojanowski, Niclas Maximilian</creator><creator>Geigle, Tom</creator><creator>Steidl, Markus</creator><creator>Wegener, Martin</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0009-2287-3877</orcidid></search><sort><creationdate>20241009</creationdate><title>Multi‐Photon 3D Laser Micro‐Printed Plastic Scintillators for Applications in Low‐Energy Particle Physics</title><author>Weinacker, Jannis ; Kalt, Sebastian ; Huber, Anton ; Gutknecht, Nathanael ; Schneider, Jonathan Ludwig Günter ; Bojanowski, Niclas Maximilian ; Geigle, Tom ; Steidl, Markus ; Wegener, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c164t-edf84bb191fa665614dabc14d3afbacfc781136b1cb315af7c4fa2345cae98823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weinacker, Jannis</creatorcontrib><creatorcontrib>Kalt, Sebastian</creatorcontrib><creatorcontrib>Huber, Anton</creatorcontrib><creatorcontrib>Gutknecht, Nathanael</creatorcontrib><creatorcontrib>Schneider, Jonathan Ludwig Günter</creatorcontrib><creatorcontrib>Bojanowski, Niclas Maximilian</creatorcontrib><creatorcontrib>Geigle, Tom</creatorcontrib><creatorcontrib>Steidl, Markus</creatorcontrib><creatorcontrib>Wegener, Martin</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weinacker, Jannis</au><au>Kalt, Sebastian</au><au>Huber, Anton</au><au>Gutknecht, Nathanael</au><au>Schneider, Jonathan Ludwig Günter</au><au>Bojanowski, Niclas Maximilian</au><au>Geigle, Tom</au><au>Steidl, Markus</au><au>Wegener, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐Photon 3D Laser Micro‐Printed Plastic Scintillators for Applications in Low‐Energy Particle Physics</atitle><jtitle>Advanced functional materials</jtitle><date>2024-10-09</date><risdate>2024</risdate><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Plastic scintillators are inexpensive to manufacture and therefore a popular alternative to inorganic crystalline scintillators. For many applications, their advantages outweigh their lower light yield. Additionally, it is easier to structure plastic scintillators with well‐developed processing techniques which is of growing relevance in modern applications. One technique to structure plastic material is 3D printing, with noteworthy recent advances in one‐photon‐based approaches. However, some applications require high spatial resolution and optically smooth surfaces, which can be achieved by multi‐photon 3D laser micro‐printing. One application example is the improvement of sensitivity of the Karlsruhe Tritium Neutrino (KATRIN) experiment. This improvement can be realized by printing a 3D scintillator structure as an active transverse energy filter directly onto the detector. Herein, the first two‐photon printable plastic scintillator providing a printing resolution in the micrometer regime is presented. Using the benefits of two‐photon grayscale lithography, optical‐grade surfaces are achieved. The light output is estimated to be 930 photons MeV −1 . A prototype structure printed directly on a single‐photon avalanche diode array is demonstrated.</abstract><doi>10.1002/adfm.202413215</doi><orcidid>https://orcid.org/0009-0009-2287-3877</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-10
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_202413215
source Access via Wiley Online Library
title Multi‐Photon 3D Laser Micro‐Printed Plastic Scintillators for Applications in Low‐Energy Particle Physics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A34%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90Photon%203D%20Laser%20Micro%E2%80%90Printed%20Plastic%20Scintillators%20for%20Applications%20in%20Low%E2%80%90Energy%20Particle%20Physics&rft.jtitle=Advanced%20functional%20materials&rft.au=Weinacker,%20Jannis&rft.date=2024-10-09&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202413215&rft_dat=%3Ccrossref%3E10_1002_adfm_202413215%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true