Hydrogen Spillover Mechanism of Superaerophobic NiSe 2 ‐Ni 5 P 4 Electrocatalyst to Promote Hydrogen Evolution in Saline Water

The hydrogen spillover mechanism of metal‐supported electrocatalyst can significantly improve HER activity. However, the rational design of binary heterojunction hydrogen spillover electrocatalysts remains a challenge. Here, a NiSe 2 ‐Ni 5 P 4 heterojunction electrocatalyst with superaerophobic stru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-10
Hauptverfasser: Jiang, Jiahui, Xu, Guancheng, Gong, Bingbing, Zhu, Jingjing, Wang, Weiwei, Zhao, Ting, Feng, Yuying, Wu, Qihao, Liu, Shuai, Zhang, Li
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Advanced functional materials
container_volume
creator Jiang, Jiahui
Xu, Guancheng
Gong, Bingbing
Zhu, Jingjing
Wang, Weiwei
Zhao, Ting
Feng, Yuying
Wu, Qihao
Liu, Shuai
Zhang, Li
description The hydrogen spillover mechanism of metal‐supported electrocatalyst can significantly improve HER activity. However, the rational design of binary heterojunction hydrogen spillover electrocatalysts remains a challenge. Here, a NiSe 2 ‐Ni 5 P 4 heterojunction electrocatalyst with superaerophobic structure is synthesized by using a simple substrate self‐derived strategy. Experimental characterization and theoretical calculation reveal the hydrogen spillover mechanism of NiSe 2 ‐Ni 5 P 4 heterogeneous electrocatalyst. NiSe 2 and Ni 5 P 4 synergistically promote the adsorption/dissociation of H 2 O and the adsorption of H * , respectively. The smaller Δ Φ effectively reduced the electron density at the interface, weakening the proton adsorption at the interface and promoting the migration of H * from NiSe 2 to Ni 5 P 4 . The NiSe 2 ‐Ni 5 P 4 exhibits excellent HER activity in alkaline electrolyte, requiring only a potential of 65, 270 mV to achieve a current density of 10, 500 mA cm −2 , respectively, and a stability of up to 200 h. Moreover, the design of NiSe 2 ‐Ni 5 P 4 with superaerophobic structure can reduce the deposition of impurity ions on the electrode surface and avoid Cl − corrosion of the electrode, which results in NiSe 2 ‐Ni 5 P 4 showing better HER activity and stability than commercial Pt/C in brackish water. This study deepens the understanding of hydrogen spillover mechanism of binary heterojunction electrocatalysts, broadens the application of hydrogen production in complex water quality.
doi_str_mv 10.1002/adfm.202412685
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202412685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202412685</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_adfm_2024126853</originalsourceid><addsrcrecordid>eNqVj7FOwzAURS0EEqWwMr8faLCdNO2OgrpQVQoSbJbrvlAjJy96ditl6yfwjXwJVKqyM9273HN1hHhUMlNS6ie7a9pMS10oXS7nV2KiSlXOcqmX12NXH7fiLsYvKdVikRcTcVoNO6ZP7KDufQh0RIZXdHvb-dgCNVAfemSLTP2ett7B2tcIGn5O32sPc9hAAVVAl5icTTYMMUEi2DC1lBBGenWkcEieOvB_Vzb4DuHdJuR7cdPYEPHhklORvVRvz6uZY4qRsTE9-9byYJQ0Z09z9jSjZ_7vwS-QJV0y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hydrogen Spillover Mechanism of Superaerophobic NiSe 2 ‐Ni 5 P 4 Electrocatalyst to Promote Hydrogen Evolution in Saline Water</title><source>Access via Wiley Online Library</source><creator>Jiang, Jiahui ; Xu, Guancheng ; Gong, Bingbing ; Zhu, Jingjing ; Wang, Weiwei ; Zhao, Ting ; Feng, Yuying ; Wu, Qihao ; Liu, Shuai ; Zhang, Li</creator><creatorcontrib>Jiang, Jiahui ; Xu, Guancheng ; Gong, Bingbing ; Zhu, Jingjing ; Wang, Weiwei ; Zhao, Ting ; Feng, Yuying ; Wu, Qihao ; Liu, Shuai ; Zhang, Li</creatorcontrib><description>The hydrogen spillover mechanism of metal‐supported electrocatalyst can significantly improve HER activity. However, the rational design of binary heterojunction hydrogen spillover electrocatalysts remains a challenge. Here, a NiSe 2 ‐Ni 5 P 4 heterojunction electrocatalyst with superaerophobic structure is synthesized by using a simple substrate self‐derived strategy. Experimental characterization and theoretical calculation reveal the hydrogen spillover mechanism of NiSe 2 ‐Ni 5 P 4 heterogeneous electrocatalyst. NiSe 2 and Ni 5 P 4 synergistically promote the adsorption/dissociation of H 2 O and the adsorption of H * , respectively. The smaller Δ Φ effectively reduced the electron density at the interface, weakening the proton adsorption at the interface and promoting the migration of H * from NiSe 2 to Ni 5 P 4 . The NiSe 2 ‐Ni 5 P 4 exhibits excellent HER activity in alkaline electrolyte, requiring only a potential of 65, 270 mV to achieve a current density of 10, 500 mA cm −2 , respectively, and a stability of up to 200 h. Moreover, the design of NiSe 2 ‐Ni 5 P 4 with superaerophobic structure can reduce the deposition of impurity ions on the electrode surface and avoid Cl − corrosion of the electrode, which results in NiSe 2 ‐Ni 5 P 4 showing better HER activity and stability than commercial Pt/C in brackish water. This study deepens the understanding of hydrogen spillover mechanism of binary heterojunction electrocatalysts, broadens the application of hydrogen production in complex water quality.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202412685</identifier><language>eng</language><ispartof>Advanced functional materials, 2024-10</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_adfm_2024126853</cites><orcidid>0000-0002-6970-4562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jiang, Jiahui</creatorcontrib><creatorcontrib>Xu, Guancheng</creatorcontrib><creatorcontrib>Gong, Bingbing</creatorcontrib><creatorcontrib>Zhu, Jingjing</creatorcontrib><creatorcontrib>Wang, Weiwei</creatorcontrib><creatorcontrib>Zhao, Ting</creatorcontrib><creatorcontrib>Feng, Yuying</creatorcontrib><creatorcontrib>Wu, Qihao</creatorcontrib><creatorcontrib>Liu, Shuai</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><title>Hydrogen Spillover Mechanism of Superaerophobic NiSe 2 ‐Ni 5 P 4 Electrocatalyst to Promote Hydrogen Evolution in Saline Water</title><title>Advanced functional materials</title><description>The hydrogen spillover mechanism of metal‐supported electrocatalyst can significantly improve HER activity. However, the rational design of binary heterojunction hydrogen spillover electrocatalysts remains a challenge. Here, a NiSe 2 ‐Ni 5 P 4 heterojunction electrocatalyst with superaerophobic structure is synthesized by using a simple substrate self‐derived strategy. Experimental characterization and theoretical calculation reveal the hydrogen spillover mechanism of NiSe 2 ‐Ni 5 P 4 heterogeneous electrocatalyst. NiSe 2 and Ni 5 P 4 synergistically promote the adsorption/dissociation of H 2 O and the adsorption of H * , respectively. The smaller Δ Φ effectively reduced the electron density at the interface, weakening the proton adsorption at the interface and promoting the migration of H * from NiSe 2 to Ni 5 P 4 . The NiSe 2 ‐Ni 5 P 4 exhibits excellent HER activity in alkaline electrolyte, requiring only a potential of 65, 270 mV to achieve a current density of 10, 500 mA cm −2 , respectively, and a stability of up to 200 h. Moreover, the design of NiSe 2 ‐Ni 5 P 4 with superaerophobic structure can reduce the deposition of impurity ions on the electrode surface and avoid Cl − corrosion of the electrode, which results in NiSe 2 ‐Ni 5 P 4 showing better HER activity and stability than commercial Pt/C in brackish water. This study deepens the understanding of hydrogen spillover mechanism of binary heterojunction electrocatalysts, broadens the application of hydrogen production in complex water quality.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVj7FOwzAURS0EEqWwMr8faLCdNO2OgrpQVQoSbJbrvlAjJy96ditl6yfwjXwJVKqyM9273HN1hHhUMlNS6ie7a9pMS10oXS7nV2KiSlXOcqmX12NXH7fiLsYvKdVikRcTcVoNO6ZP7KDufQh0RIZXdHvb-dgCNVAfemSLTP2ett7B2tcIGn5O32sPc9hAAVVAl5icTTYMMUEi2DC1lBBGenWkcEieOvB_Vzb4DuHdJuR7cdPYEPHhklORvVRvz6uZY4qRsTE9-9byYJQ0Z09z9jSjZ_7vwS-QJV0y</recordid><startdate>20241007</startdate><enddate>20241007</enddate><creator>Jiang, Jiahui</creator><creator>Xu, Guancheng</creator><creator>Gong, Bingbing</creator><creator>Zhu, Jingjing</creator><creator>Wang, Weiwei</creator><creator>Zhao, Ting</creator><creator>Feng, Yuying</creator><creator>Wu, Qihao</creator><creator>Liu, Shuai</creator><creator>Zhang, Li</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6970-4562</orcidid></search><sort><creationdate>20241007</creationdate><title>Hydrogen Spillover Mechanism of Superaerophobic NiSe 2 ‐Ni 5 P 4 Electrocatalyst to Promote Hydrogen Evolution in Saline Water</title><author>Jiang, Jiahui ; Xu, Guancheng ; Gong, Bingbing ; Zhu, Jingjing ; Wang, Weiwei ; Zhao, Ting ; Feng, Yuying ; Wu, Qihao ; Liu, Shuai ; Zhang, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_adfm_2024126853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Jiahui</creatorcontrib><creatorcontrib>Xu, Guancheng</creatorcontrib><creatorcontrib>Gong, Bingbing</creatorcontrib><creatorcontrib>Zhu, Jingjing</creatorcontrib><creatorcontrib>Wang, Weiwei</creatorcontrib><creatorcontrib>Zhao, Ting</creatorcontrib><creatorcontrib>Feng, Yuying</creatorcontrib><creatorcontrib>Wu, Qihao</creatorcontrib><creatorcontrib>Liu, Shuai</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Jiahui</au><au>Xu, Guancheng</au><au>Gong, Bingbing</au><au>Zhu, Jingjing</au><au>Wang, Weiwei</au><au>Zhao, Ting</au><au>Feng, Yuying</au><au>Wu, Qihao</au><au>Liu, Shuai</au><au>Zhang, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen Spillover Mechanism of Superaerophobic NiSe 2 ‐Ni 5 P 4 Electrocatalyst to Promote Hydrogen Evolution in Saline Water</atitle><jtitle>Advanced functional materials</jtitle><date>2024-10-07</date><risdate>2024</risdate><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The hydrogen spillover mechanism of metal‐supported electrocatalyst can significantly improve HER activity. However, the rational design of binary heterojunction hydrogen spillover electrocatalysts remains a challenge. Here, a NiSe 2 ‐Ni 5 P 4 heterojunction electrocatalyst with superaerophobic structure is synthesized by using a simple substrate self‐derived strategy. Experimental characterization and theoretical calculation reveal the hydrogen spillover mechanism of NiSe 2 ‐Ni 5 P 4 heterogeneous electrocatalyst. NiSe 2 and Ni 5 P 4 synergistically promote the adsorption/dissociation of H 2 O and the adsorption of H * , respectively. The smaller Δ Φ effectively reduced the electron density at the interface, weakening the proton adsorption at the interface and promoting the migration of H * from NiSe 2 to Ni 5 P 4 . The NiSe 2 ‐Ni 5 P 4 exhibits excellent HER activity in alkaline electrolyte, requiring only a potential of 65, 270 mV to achieve a current density of 10, 500 mA cm −2 , respectively, and a stability of up to 200 h. Moreover, the design of NiSe 2 ‐Ni 5 P 4 with superaerophobic structure can reduce the deposition of impurity ions on the electrode surface and avoid Cl − corrosion of the electrode, which results in NiSe 2 ‐Ni 5 P 4 showing better HER activity and stability than commercial Pt/C in brackish water. This study deepens the understanding of hydrogen spillover mechanism of binary heterojunction electrocatalysts, broadens the application of hydrogen production in complex water quality.</abstract><doi>10.1002/adfm.202412685</doi><orcidid>https://orcid.org/0000-0002-6970-4562</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-10
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_202412685
source Access via Wiley Online Library
title Hydrogen Spillover Mechanism of Superaerophobic NiSe 2 ‐Ni 5 P 4 Electrocatalyst to Promote Hydrogen Evolution in Saline Water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A14%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20Spillover%20Mechanism%20of%20Superaerophobic%20NiSe%202%20%E2%80%90Ni%205%20P%204%20Electrocatalyst%20to%20Promote%20Hydrogen%20Evolution%20in%20Saline%20Water&rft.jtitle=Advanced%20functional%20materials&rft.au=Jiang,%20Jiahui&rft.date=2024-10-07&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202412685&rft_dat=%3Ccrossref%3E10_1002_adfm_202412685%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true