Conductive Li 2 S‐NbSe 2 Cathode Material Capable of Bidirectional Self‐Activation for High‐Performance All‐Solid‐State Lithium Metal Batteries

All‐solid‐state lithium metal batteries (ASSLBs) offer an alternative route to safe and high energy density power sources. Sulfur‐based cathodes with high theoretical specific capacity and low cost are crucial for advancing ASSLBs. However, the electronic insulation and sluggish kinetics of sulfide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2025-01, Vol.35 (1)
Hauptverfasser: Hu, Yaqi, Liu, Yanchen, Lu, Yang, Zhang, Zongliang, Liu, Siliang, He, Fangbo, Liu, Yang, Chen, Yongle, Liu, Fangyang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Advanced functional materials
container_volume 35
creator Hu, Yaqi
Liu, Yanchen
Lu, Yang
Zhang, Zongliang
Liu, Siliang
He, Fangbo
Liu, Yang
Chen, Yongle
Liu, Fangyang
description All‐solid‐state lithium metal batteries (ASSLBs) offer an alternative route to safe and high energy density power sources. Sulfur‐based cathodes with high theoretical specific capacity and low cost are crucial for advancing ASSLBs. However, the electronic insulation and sluggish kinetics of sulfide materials like Li 2 S severely limit battery performance. Herein, the strategy is proposed that a highly electronic conductive Li 2 S‐NbSe 2 material enhances the electrochemical performance through bidirectional self‐activation. The chemical interaction between Li 2 S and NbSe 2 induces NbSe 2‐x S x and Li 2 Se derivatization, serving as the basis for activation. The carrier transport properties, chemical evolution and self‐activation mechanism of Li 2 S‐NbSe 2 during the oxidation–reduction process are revealed. The chemical activation of NbSe 2‐x S x is explored to accelerate the electrochemical processes by modifying the conductivity of sulfur species and the conversion pathways without insulating Li 2 S and S aggregation. Therefore, ASSLBs using Li 2 S‐NbSe 2 as cathode active material achieve an electrode‐level energy density of 394 Wh kg −1 and a power density of 524 W kg −1 at 1 C (4.35 mA cm −2 ) and 25 °C. The capacity retention after 100 cycles at 0.5 C is ≈99.3% with almost no degradation. This work provides new options and insights for the rational design and development of chalcogenide cathode active materials for high‐performance ASSLBs.
doi_str_mv 10.1002/adfm.202412070
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202412070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202412070</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_adfm_2024120703</originalsourceid><addsrcrecordid>eNqVUMFKAzEUDKJgrV49vx_ommRL12u7KD3YIqyH3kK6--JGspuSpII3P8Grv-eX-ALSu6eZN4-ZgWHsVvBCcC7vdGeGQnI5F5JX_IxNxEIsZiWX9-cnLnaX7CrGN85FVZXzCfuu_dgd22TfEZ4sSGh-Pr-2-waJ1jr1vkPY6ITBakfCQe8dgjewsp0NSD4_0qNBZ8i3zDk6a2B8gLV97Ul9xkDXoMcWYekcKY13tsuYKJlqU2-PA2wwUdRKp9yG8ZpdGO0i3vzhlBWPDy_1etYGH2NAow7BDjp8KMFVHkDlAdRpgPLfhl_kc2mz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Conductive Li 2 S‐NbSe 2 Cathode Material Capable of Bidirectional Self‐Activation for High‐Performance All‐Solid‐State Lithium Metal Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hu, Yaqi ; Liu, Yanchen ; Lu, Yang ; Zhang, Zongliang ; Liu, Siliang ; He, Fangbo ; Liu, Yang ; Chen, Yongle ; Liu, Fangyang</creator><creatorcontrib>Hu, Yaqi ; Liu, Yanchen ; Lu, Yang ; Zhang, Zongliang ; Liu, Siliang ; He, Fangbo ; Liu, Yang ; Chen, Yongle ; Liu, Fangyang</creatorcontrib><description>All‐solid‐state lithium metal batteries (ASSLBs) offer an alternative route to safe and high energy density power sources. Sulfur‐based cathodes with high theoretical specific capacity and low cost are crucial for advancing ASSLBs. However, the electronic insulation and sluggish kinetics of sulfide materials like Li 2 S severely limit battery performance. Herein, the strategy is proposed that a highly electronic conductive Li 2 S‐NbSe 2 material enhances the electrochemical performance through bidirectional self‐activation. The chemical interaction between Li 2 S and NbSe 2 induces NbSe 2‐x S x and Li 2 Se derivatization, serving as the basis for activation. The carrier transport properties, chemical evolution and self‐activation mechanism of Li 2 S‐NbSe 2 during the oxidation–reduction process are revealed. The chemical activation of NbSe 2‐x S x is explored to accelerate the electrochemical processes by modifying the conductivity of sulfur species and the conversion pathways without insulating Li 2 S and S aggregation. Therefore, ASSLBs using Li 2 S‐NbSe 2 as cathode active material achieve an electrode‐level energy density of 394 Wh kg −1 and a power density of 524 W kg −1 at 1 C (4.35 mA cm −2 ) and 25 °C. The capacity retention after 100 cycles at 0.5 C is ≈99.3% with almost no degradation. This work provides new options and insights for the rational design and development of chalcogenide cathode active materials for high‐performance ASSLBs.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202412070</identifier><language>eng</language><ispartof>Advanced functional materials, 2025-01, Vol.35 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_adfm_2024120703</cites><orcidid>0000-0002-0580-7888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hu, Yaqi</creatorcontrib><creatorcontrib>Liu, Yanchen</creatorcontrib><creatorcontrib>Lu, Yang</creatorcontrib><creatorcontrib>Zhang, Zongliang</creatorcontrib><creatorcontrib>Liu, Siliang</creatorcontrib><creatorcontrib>He, Fangbo</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Chen, Yongle</creatorcontrib><creatorcontrib>Liu, Fangyang</creatorcontrib><title>Conductive Li 2 S‐NbSe 2 Cathode Material Capable of Bidirectional Self‐Activation for High‐Performance All‐Solid‐State Lithium Metal Batteries</title><title>Advanced functional materials</title><description>All‐solid‐state lithium metal batteries (ASSLBs) offer an alternative route to safe and high energy density power sources. Sulfur‐based cathodes with high theoretical specific capacity and low cost are crucial for advancing ASSLBs. However, the electronic insulation and sluggish kinetics of sulfide materials like Li 2 S severely limit battery performance. Herein, the strategy is proposed that a highly electronic conductive Li 2 S‐NbSe 2 material enhances the electrochemical performance through bidirectional self‐activation. The chemical interaction between Li 2 S and NbSe 2 induces NbSe 2‐x S x and Li 2 Se derivatization, serving as the basis for activation. The carrier transport properties, chemical evolution and self‐activation mechanism of Li 2 S‐NbSe 2 during the oxidation–reduction process are revealed. The chemical activation of NbSe 2‐x S x is explored to accelerate the electrochemical processes by modifying the conductivity of sulfur species and the conversion pathways without insulating Li 2 S and S aggregation. Therefore, ASSLBs using Li 2 S‐NbSe 2 as cathode active material achieve an electrode‐level energy density of 394 Wh kg −1 and a power density of 524 W kg −1 at 1 C (4.35 mA cm −2 ) and 25 °C. The capacity retention after 100 cycles at 0.5 C is ≈99.3% with almost no degradation. This work provides new options and insights for the rational design and development of chalcogenide cathode active materials for high‐performance ASSLBs.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqVUMFKAzEUDKJgrV49vx_ommRL12u7KD3YIqyH3kK6--JGspuSpII3P8Grv-eX-ALSu6eZN4-ZgWHsVvBCcC7vdGeGQnI5F5JX_IxNxEIsZiWX9-cnLnaX7CrGN85FVZXzCfuu_dgd22TfEZ4sSGh-Pr-2-waJ1jr1vkPY6ITBakfCQe8dgjewsp0NSD4_0qNBZ8i3zDk6a2B8gLV97Ul9xkDXoMcWYekcKY13tsuYKJlqU2-PA2wwUdRKp9yG8ZpdGO0i3vzhlBWPDy_1etYGH2NAow7BDjp8KMFVHkDlAdRpgPLfhl_kc2mz</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Hu, Yaqi</creator><creator>Liu, Yanchen</creator><creator>Lu, Yang</creator><creator>Zhang, Zongliang</creator><creator>Liu, Siliang</creator><creator>He, Fangbo</creator><creator>Liu, Yang</creator><creator>Chen, Yongle</creator><creator>Liu, Fangyang</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0580-7888</orcidid></search><sort><creationdate>202501</creationdate><title>Conductive Li 2 S‐NbSe 2 Cathode Material Capable of Bidirectional Self‐Activation for High‐Performance All‐Solid‐State Lithium Metal Batteries</title><author>Hu, Yaqi ; Liu, Yanchen ; Lu, Yang ; Zhang, Zongliang ; Liu, Siliang ; He, Fangbo ; Liu, Yang ; Chen, Yongle ; Liu, Fangyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_adfm_2024120703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yaqi</creatorcontrib><creatorcontrib>Liu, Yanchen</creatorcontrib><creatorcontrib>Lu, Yang</creatorcontrib><creatorcontrib>Zhang, Zongliang</creatorcontrib><creatorcontrib>Liu, Siliang</creatorcontrib><creatorcontrib>He, Fangbo</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Chen, Yongle</creatorcontrib><creatorcontrib>Liu, Fangyang</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yaqi</au><au>Liu, Yanchen</au><au>Lu, Yang</au><au>Zhang, Zongliang</au><au>Liu, Siliang</au><au>He, Fangbo</au><au>Liu, Yang</au><au>Chen, Yongle</au><au>Liu, Fangyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductive Li 2 S‐NbSe 2 Cathode Material Capable of Bidirectional Self‐Activation for High‐Performance All‐Solid‐State Lithium Metal Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2025-01</date><risdate>2025</risdate><volume>35</volume><issue>1</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>All‐solid‐state lithium metal batteries (ASSLBs) offer an alternative route to safe and high energy density power sources. Sulfur‐based cathodes with high theoretical specific capacity and low cost are crucial for advancing ASSLBs. However, the electronic insulation and sluggish kinetics of sulfide materials like Li 2 S severely limit battery performance. Herein, the strategy is proposed that a highly electronic conductive Li 2 S‐NbSe 2 material enhances the electrochemical performance through bidirectional self‐activation. The chemical interaction between Li 2 S and NbSe 2 induces NbSe 2‐x S x and Li 2 Se derivatization, serving as the basis for activation. The carrier transport properties, chemical evolution and self‐activation mechanism of Li 2 S‐NbSe 2 during the oxidation–reduction process are revealed. The chemical activation of NbSe 2‐x S x is explored to accelerate the electrochemical processes by modifying the conductivity of sulfur species and the conversion pathways without insulating Li 2 S and S aggregation. Therefore, ASSLBs using Li 2 S‐NbSe 2 as cathode active material achieve an electrode‐level energy density of 394 Wh kg −1 and a power density of 524 W kg −1 at 1 C (4.35 mA cm −2 ) and 25 °C. The capacity retention after 100 cycles at 0.5 C is ≈99.3% with almost no degradation. This work provides new options and insights for the rational design and development of chalcogenide cathode active materials for high‐performance ASSLBs.</abstract><doi>10.1002/adfm.202412070</doi><orcidid>https://orcid.org/0000-0002-0580-7888</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2025-01, Vol.35 (1)
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_202412070
source Wiley Online Library Journals Frontfile Complete
title Conductive Li 2 S‐NbSe 2 Cathode Material Capable of Bidirectional Self‐Activation for High‐Performance All‐Solid‐State Lithium Metal Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductive%20Li%202%20S%E2%80%90NbSe%202%20Cathode%20Material%20Capable%20of%20Bidirectional%20Self%E2%80%90Activation%20for%20High%E2%80%90Performance%20All%E2%80%90Solid%E2%80%90State%20Lithium%20Metal%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Hu,%20Yaqi&rft.date=2025-01&rft.volume=35&rft.issue=1&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202412070&rft_dat=%3Ccrossref%3E10_1002_adfm_202412070%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true