Revolutionizing CO 2 ‐to‐C 2 Conversion: Unleashing the Potential of CeO 2 Nanocores for Self‐ Supported Electrocatalysts with Cu 2 O Nanoflakes on 3D Graphene Aerogel
Cu serves as a promising electrocatalyst for converting CO 2 into valuable C 2 products in CO 2 reduction reactions (CO 2 RR). However, instability in CO* formation is crucial for CO 2 adsorption‐ desorption still remains a challenge under reduction conditions. This study explores the impact of lant...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-09 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Advanced functional materials |
container_volume | |
creator | Yap, Feng Ming Loh, Jian Yiing Yuan, Shaoyu Zeng, Xianhai Ong, Wee‐Jun |
description | Cu serves as a promising electrocatalyst for converting CO 2 into valuable C 2 products in CO 2 reduction reactions (CO 2 RR). However, instability in CO* formation is crucial for CO 2 adsorption‐ desorption still remains a challenge under reduction conditions. This study explores the impact of lanthanide oxide, particularly CeO 2 , on Cu‐based catalytic performances. By leveraging Ce's distinctive electronic structure, CO* species are stabilized during the reaction in CeO 2 ─Cu 2 O, resulting in exceptional catalytic performance for CO 2 electroreduction to C 2 products. Hybridizing CeO 2 ‐Cu 2 O with graphene aerogel enhances electrochemical active surface area and CO 2 RR efficiency. The resulting CeO 2 ─Cu 2 O(10%)/GA electrocatalyst exhibits a remarkable faradaic efficiency for C 2 products, exceeding 62%, alongside exceptional stability over 80 h with wide potential window (−0.8 to −1.2 V) using a H‐cell. Systematic investigations elucidate the intricate interplay between surface properties and catalytic activity. Furthermore, a solar cell‐ powered CO 2 reduction system demonstrates consistent performance (−27.8 mA cm − 2 at 3.46 V) under solar radiation of ≈100 mW cm − 2 , showcasing outstanding stability with nearly 100% retention over 4 h of continuous illumination. In short, by harnessing catalytic and electronic effects, this innovation advances the development of electrocatalysts with heightened CO 2 ‐to‐C 2 selectivity, bridging fundamental research with technological innovation to tackle critical global challenges. |
doi_str_mv | 10.1002/adfm.202407605 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202407605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202407605</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_adfm_2024076053</originalsourceid><addsrcrecordid>eNqVkE1OwzAQhS0EEuVny3ou0GAnJUHskCmwooiCxC6y0nFjcD2R7RSVFUfgIlyKk-Ag1D2beW_xvll8jJ0IngnO81O10Kss5_mEVyU_22EjUYpyXPD8fHfbxfM-OwjhhXNRVcVkxL4ecE22j4aceTduCXIGOXx_fEZKR6Yuya3RhzS4gCdnUYV22MUW4Z4iumiUBdIgcSDvlKOGPAbQ5GGOVqc3MO-7jnzEBUwtNtFTo6KymxADvJnYguwTOvuFtVWviSYHxRXceNW16BAu0dMS7RHb08oGPP7LQ5ZdTx_l7bjxFIJHXXferJTf1ILXg5R6kFJvpRT_Bn4Ap8BuJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Revolutionizing CO 2 ‐to‐C 2 Conversion: Unleashing the Potential of CeO 2 Nanocores for Self‐ Supported Electrocatalysts with Cu 2 O Nanoflakes on 3D Graphene Aerogel</title><source>Wiley Online Library</source><creator>Yap, Feng Ming ; Loh, Jian Yiing ; Yuan, Shaoyu ; Zeng, Xianhai ; Ong, Wee‐Jun</creator><creatorcontrib>Yap, Feng Ming ; Loh, Jian Yiing ; Yuan, Shaoyu ; Zeng, Xianhai ; Ong, Wee‐Jun</creatorcontrib><description>Cu serves as a promising electrocatalyst for converting CO 2 into valuable C 2 products in CO 2 reduction reactions (CO 2 RR). However, instability in CO* formation is crucial for CO 2 adsorption‐ desorption still remains a challenge under reduction conditions. This study explores the impact of lanthanide oxide, particularly CeO 2 , on Cu‐based catalytic performances. By leveraging Ce's distinctive electronic structure, CO* species are stabilized during the reaction in CeO 2 ─Cu 2 O, resulting in exceptional catalytic performance for CO 2 electroreduction to C 2 products. Hybridizing CeO 2 ‐Cu 2 O with graphene aerogel enhances electrochemical active surface area and CO 2 RR efficiency. The resulting CeO 2 ─Cu 2 O(10%)/GA electrocatalyst exhibits a remarkable faradaic efficiency for C 2 products, exceeding 62%, alongside exceptional stability over 80 h with wide potential window (−0.8 to −1.2 V) using a H‐cell. Systematic investigations elucidate the intricate interplay between surface properties and catalytic activity. Furthermore, a solar cell‐ powered CO 2 reduction system demonstrates consistent performance (−27.8 mA cm − 2 at 3.46 V) under solar radiation of ≈100 mW cm − 2 , showcasing outstanding stability with nearly 100% retention over 4 h of continuous illumination. In short, by harnessing catalytic and electronic effects, this innovation advances the development of electrocatalysts with heightened CO 2 ‐to‐C 2 selectivity, bridging fundamental research with technological innovation to tackle critical global challenges.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202407605</identifier><language>eng</language><ispartof>Advanced functional materials, 2024-09</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_adfm_2024076053</cites><orcidid>0000-0002-5124-1934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Yap, Feng Ming</creatorcontrib><creatorcontrib>Loh, Jian Yiing</creatorcontrib><creatorcontrib>Yuan, Shaoyu</creatorcontrib><creatorcontrib>Zeng, Xianhai</creatorcontrib><creatorcontrib>Ong, Wee‐Jun</creatorcontrib><title>Revolutionizing CO 2 ‐to‐C 2 Conversion: Unleashing the Potential of CeO 2 Nanocores for Self‐ Supported Electrocatalysts with Cu 2 O Nanoflakes on 3D Graphene Aerogel</title><title>Advanced functional materials</title><description>Cu serves as a promising electrocatalyst for converting CO 2 into valuable C 2 products in CO 2 reduction reactions (CO 2 RR). However, instability in CO* formation is crucial for CO 2 adsorption‐ desorption still remains a challenge under reduction conditions. This study explores the impact of lanthanide oxide, particularly CeO 2 , on Cu‐based catalytic performances. By leveraging Ce's distinctive electronic structure, CO* species are stabilized during the reaction in CeO 2 ─Cu 2 O, resulting in exceptional catalytic performance for CO 2 electroreduction to C 2 products. Hybridizing CeO 2 ‐Cu 2 O with graphene aerogel enhances electrochemical active surface area and CO 2 RR efficiency. The resulting CeO 2 ─Cu 2 O(10%)/GA electrocatalyst exhibits a remarkable faradaic efficiency for C 2 products, exceeding 62%, alongside exceptional stability over 80 h with wide potential window (−0.8 to −1.2 V) using a H‐cell. Systematic investigations elucidate the intricate interplay between surface properties and catalytic activity. Furthermore, a solar cell‐ powered CO 2 reduction system demonstrates consistent performance (−27.8 mA cm − 2 at 3.46 V) under solar radiation of ≈100 mW cm − 2 , showcasing outstanding stability with nearly 100% retention over 4 h of continuous illumination. In short, by harnessing catalytic and electronic effects, this innovation advances the development of electrocatalysts with heightened CO 2 ‐to‐C 2 selectivity, bridging fundamental research with technological innovation to tackle critical global challenges.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVkE1OwzAQhS0EEuVny3ou0GAnJUHskCmwooiCxC6y0nFjcD2R7RSVFUfgIlyKk-Ag1D2beW_xvll8jJ0IngnO81O10Kss5_mEVyU_22EjUYpyXPD8fHfbxfM-OwjhhXNRVcVkxL4ecE22j4aceTduCXIGOXx_fEZKR6Yuya3RhzS4gCdnUYV22MUW4Z4iumiUBdIgcSDvlKOGPAbQ5GGOVqc3MO-7jnzEBUwtNtFTo6KymxADvJnYguwTOvuFtVWviSYHxRXceNW16BAu0dMS7RHb08oGPP7LQ5ZdTx_l7bjxFIJHXXferJTf1ILXg5R6kFJvpRT_Bn4Ap8BuJA</recordid><startdate>20240903</startdate><enddate>20240903</enddate><creator>Yap, Feng Ming</creator><creator>Loh, Jian Yiing</creator><creator>Yuan, Shaoyu</creator><creator>Zeng, Xianhai</creator><creator>Ong, Wee‐Jun</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5124-1934</orcidid></search><sort><creationdate>20240903</creationdate><title>Revolutionizing CO 2 ‐to‐C 2 Conversion: Unleashing the Potential of CeO 2 Nanocores for Self‐ Supported Electrocatalysts with Cu 2 O Nanoflakes on 3D Graphene Aerogel</title><author>Yap, Feng Ming ; Loh, Jian Yiing ; Yuan, Shaoyu ; Zeng, Xianhai ; Ong, Wee‐Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_adfm_2024076053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yap, Feng Ming</creatorcontrib><creatorcontrib>Loh, Jian Yiing</creatorcontrib><creatorcontrib>Yuan, Shaoyu</creatorcontrib><creatorcontrib>Zeng, Xianhai</creatorcontrib><creatorcontrib>Ong, Wee‐Jun</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yap, Feng Ming</au><au>Loh, Jian Yiing</au><au>Yuan, Shaoyu</au><au>Zeng, Xianhai</au><au>Ong, Wee‐Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revolutionizing CO 2 ‐to‐C 2 Conversion: Unleashing the Potential of CeO 2 Nanocores for Self‐ Supported Electrocatalysts with Cu 2 O Nanoflakes on 3D Graphene Aerogel</atitle><jtitle>Advanced functional materials</jtitle><date>2024-09-03</date><risdate>2024</risdate><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Cu serves as a promising electrocatalyst for converting CO 2 into valuable C 2 products in CO 2 reduction reactions (CO 2 RR). However, instability in CO* formation is crucial for CO 2 adsorption‐ desorption still remains a challenge under reduction conditions. This study explores the impact of lanthanide oxide, particularly CeO 2 , on Cu‐based catalytic performances. By leveraging Ce's distinctive electronic structure, CO* species are stabilized during the reaction in CeO 2 ─Cu 2 O, resulting in exceptional catalytic performance for CO 2 electroreduction to C 2 products. Hybridizing CeO 2 ‐Cu 2 O with graphene aerogel enhances electrochemical active surface area and CO 2 RR efficiency. The resulting CeO 2 ─Cu 2 O(10%)/GA electrocatalyst exhibits a remarkable faradaic efficiency for C 2 products, exceeding 62%, alongside exceptional stability over 80 h with wide potential window (−0.8 to −1.2 V) using a H‐cell. Systematic investigations elucidate the intricate interplay between surface properties and catalytic activity. Furthermore, a solar cell‐ powered CO 2 reduction system demonstrates consistent performance (−27.8 mA cm − 2 at 3.46 V) under solar radiation of ≈100 mW cm − 2 , showcasing outstanding stability with nearly 100% retention over 4 h of continuous illumination. In short, by harnessing catalytic and electronic effects, this innovation advances the development of electrocatalysts with heightened CO 2 ‐to‐C 2 selectivity, bridging fundamental research with technological innovation to tackle critical global challenges.</abstract><doi>10.1002/adfm.202407605</doi><orcidid>https://orcid.org/0000-0002-5124-1934</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-09 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_crossref_primary_10_1002_adfm_202407605 |
source | Wiley Online Library |
title | Revolutionizing CO 2 ‐to‐C 2 Conversion: Unleashing the Potential of CeO 2 Nanocores for Self‐ Supported Electrocatalysts with Cu 2 O Nanoflakes on 3D Graphene Aerogel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T21%3A54%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revolutionizing%20CO%202%20%E2%80%90to%E2%80%90C%202%20Conversion:%20Unleashing%20the%20Potential%20of%20CeO%202%20Nanocores%20for%20Self%E2%80%90%20Supported%20Electrocatalysts%20with%20Cu%202%20O%20Nanoflakes%20on%203D%20Graphene%20Aerogel&rft.jtitle=Advanced%20functional%20materials&rft.au=Yap,%20Feng%20Ming&rft.date=2024-09-03&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202407605&rft_dat=%3Ccrossref%3E10_1002_adfm_202407605%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |