A Hybrid LiCl/Li x Sn Conductive Interlayer to Unlock the Potential of Solid‐State Lithium Metal Batteries

Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP) electrolyte has a great potential for application in solid‐state lithium metal batteries. However, due to the poor interfacial contact and thermodynamic instability between LATP and Li metal, a series of interfacial problems, such as high interfacial resistance,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-07, Vol.34 (29)
Hauptverfasser: Ding, Decheng, Tao, Huachao, Fan, Xiaomeng, Yang, Xuelin, Fan, Li‐Zhen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 29
container_start_page
container_title Advanced functional materials
container_volume 34
creator Ding, Decheng
Tao, Huachao
Fan, Xiaomeng
Yang, Xuelin
Fan, Li‐Zhen
description Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP) electrolyte has a great potential for application in solid‐state lithium metal batteries. However, due to the poor interfacial contact and thermodynamic instability between LATP and Li metal, a series of interfacial problems, such as high interfacial resistance, undesirable interfacial reaction and dendrite growth are deeply criticized. Herein, a hybrid LiCl/Li x Sn conductive interlayer is constructed through an in situ electrochemical reaction of SnCl 4 with Li metal to effectively improve the compatibility and stability of the Li/LATP interface. LiCl with both electronic insulation and high ionic conductivity can provide fast Li + diffusion channel, block electron injection, avoid side reactions, and effectively inhibit dendrite growth. Li x Sn can reduce interfacial impedance, eliminate local electric field concentration, and significantly improve interfacial wettability. Under the protection of LiCl/Li x Sn hybrid interlayer, the initial resistance of the symmetric battery is reduced from 1066.3 to 133.6 Ω cm −2 , achieving a high critical current density of 1.4 mA cm −2 . At 0.1 mA cm −2 /0.1 mAh cm −2 and 0.2 mA cm −2 /0.2 mAh cm −2 , the symmetric battery can cycle stably for more than 4000 h at 25 °C. Moreover, the full battery displays a high capacity retention ratio of 90.4% after 420 cycles at 0.5 C.
doi_str_mv 10.1002/adfm.202401457
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202401457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202401457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c847-f7dc7b24de012a50d6bfecaf526c348d939f257a007c93cdd9ec8b7cec47ccfe3</originalsourceid><addsrcrecordid>eNo9kM1KAzEYRYMoWKtb13mBafM3k5llHdQWRhRawd2QSb7QaDqRTCp25yP4jD6JLUpX98CFszgIXVMyoYSwqTJ2M2GECUJFLk_QiBa0yDhh5emR6cs5uhiGV0KolFyMkJ_h-a6LzuDG1X7aOPyJlz2uQ2-2OrkPwIs-QfRqBxGngJ97H_QbTmvATyFBn5zyOFi8DN6Zn6_vZVIJ9q60dtsNfoC0v29U2iscDJfozCo_wNX_jtHq7nZVz7Pm8X5Rz5pMl0JmVhotOyYMEMpUTkzRWdDK5qzQXJSm4pVluVSESF1xbUwFuuykBi2k1hb4GE3-tDqGYYhg2_foNiruWkraQ6r2kKo9puK_NJdfbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Hybrid LiCl/Li x Sn Conductive Interlayer to Unlock the Potential of Solid‐State Lithium Metal Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ding, Decheng ; Tao, Huachao ; Fan, Xiaomeng ; Yang, Xuelin ; Fan, Li‐Zhen</creator><creatorcontrib>Ding, Decheng ; Tao, Huachao ; Fan, Xiaomeng ; Yang, Xuelin ; Fan, Li‐Zhen</creatorcontrib><description>Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP) electrolyte has a great potential for application in solid‐state lithium metal batteries. However, due to the poor interfacial contact and thermodynamic instability between LATP and Li metal, a series of interfacial problems, such as high interfacial resistance, undesirable interfacial reaction and dendrite growth are deeply criticized. Herein, a hybrid LiCl/Li x Sn conductive interlayer is constructed through an in situ electrochemical reaction of SnCl 4 with Li metal to effectively improve the compatibility and stability of the Li/LATP interface. LiCl with both electronic insulation and high ionic conductivity can provide fast Li + diffusion channel, block electron injection, avoid side reactions, and effectively inhibit dendrite growth. Li x Sn can reduce interfacial impedance, eliminate local electric field concentration, and significantly improve interfacial wettability. Under the protection of LiCl/Li x Sn hybrid interlayer, the initial resistance of the symmetric battery is reduced from 1066.3 to 133.6 Ω cm −2 , achieving a high critical current density of 1.4 mA cm −2 . At 0.1 mA cm −2 /0.1 mAh cm −2 and 0.2 mA cm −2 /0.2 mAh cm −2 , the symmetric battery can cycle stably for more than 4000 h at 25 °C. Moreover, the full battery displays a high capacity retention ratio of 90.4% after 420 cycles at 0.5 C.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202401457</identifier><language>eng</language><ispartof>Advanced functional materials, 2024-07, Vol.34 (29)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c847-f7dc7b24de012a50d6bfecaf526c348d939f257a007c93cdd9ec8b7cec47ccfe3</citedby><cites>FETCH-LOGICAL-c847-f7dc7b24de012a50d6bfecaf526c348d939f257a007c93cdd9ec8b7cec47ccfe3</cites><orcidid>0009-0006-9552-5767 ; 0000-0001-5626-701X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ding, Decheng</creatorcontrib><creatorcontrib>Tao, Huachao</creatorcontrib><creatorcontrib>Fan, Xiaomeng</creatorcontrib><creatorcontrib>Yang, Xuelin</creatorcontrib><creatorcontrib>Fan, Li‐Zhen</creatorcontrib><title>A Hybrid LiCl/Li x Sn Conductive Interlayer to Unlock the Potential of Solid‐State Lithium Metal Batteries</title><title>Advanced functional materials</title><description>Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP) electrolyte has a great potential for application in solid‐state lithium metal batteries. However, due to the poor interfacial contact and thermodynamic instability between LATP and Li metal, a series of interfacial problems, such as high interfacial resistance, undesirable interfacial reaction and dendrite growth are deeply criticized. Herein, a hybrid LiCl/Li x Sn conductive interlayer is constructed through an in situ electrochemical reaction of SnCl 4 with Li metal to effectively improve the compatibility and stability of the Li/LATP interface. LiCl with both electronic insulation and high ionic conductivity can provide fast Li + diffusion channel, block electron injection, avoid side reactions, and effectively inhibit dendrite growth. Li x Sn can reduce interfacial impedance, eliminate local electric field concentration, and significantly improve interfacial wettability. Under the protection of LiCl/Li x Sn hybrid interlayer, the initial resistance of the symmetric battery is reduced from 1066.3 to 133.6 Ω cm −2 , achieving a high critical current density of 1.4 mA cm −2 . At 0.1 mA cm −2 /0.1 mAh cm −2 and 0.2 mA cm −2 /0.2 mAh cm −2 , the symmetric battery can cycle stably for more than 4000 h at 25 °C. Moreover, the full battery displays a high capacity retention ratio of 90.4% after 420 cycles at 0.5 C.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEYRYMoWKtb13mBafM3k5llHdQWRhRawd2QSb7QaDqRTCp25yP4jD6JLUpX98CFszgIXVMyoYSwqTJ2M2GECUJFLk_QiBa0yDhh5emR6cs5uhiGV0KolFyMkJ_h-a6LzuDG1X7aOPyJlz2uQ2-2OrkPwIs-QfRqBxGngJ97H_QbTmvATyFBn5zyOFi8DN6Zn6_vZVIJ9q60dtsNfoC0v29U2iscDJfozCo_wNX_jtHq7nZVz7Pm8X5Rz5pMl0JmVhotOyYMEMpUTkzRWdDK5qzQXJSm4pVluVSESF1xbUwFuuykBi2k1hb4GE3-tDqGYYhg2_foNiruWkraQ6r2kKo9puK_NJdfbw</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Ding, Decheng</creator><creator>Tao, Huachao</creator><creator>Fan, Xiaomeng</creator><creator>Yang, Xuelin</creator><creator>Fan, Li‐Zhen</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0006-9552-5767</orcidid><orcidid>https://orcid.org/0000-0001-5626-701X</orcidid></search><sort><creationdate>202407</creationdate><title>A Hybrid LiCl/Li x Sn Conductive Interlayer to Unlock the Potential of Solid‐State Lithium Metal Batteries</title><author>Ding, Decheng ; Tao, Huachao ; Fan, Xiaomeng ; Yang, Xuelin ; Fan, Li‐Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c847-f7dc7b24de012a50d6bfecaf526c348d939f257a007c93cdd9ec8b7cec47ccfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Decheng</creatorcontrib><creatorcontrib>Tao, Huachao</creatorcontrib><creatorcontrib>Fan, Xiaomeng</creatorcontrib><creatorcontrib>Yang, Xuelin</creatorcontrib><creatorcontrib>Fan, Li‐Zhen</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Decheng</au><au>Tao, Huachao</au><au>Fan, Xiaomeng</au><au>Yang, Xuelin</au><au>Fan, Li‐Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid LiCl/Li x Sn Conductive Interlayer to Unlock the Potential of Solid‐State Lithium Metal Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2024-07</date><risdate>2024</risdate><volume>34</volume><issue>29</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP) electrolyte has a great potential for application in solid‐state lithium metal batteries. However, due to the poor interfacial contact and thermodynamic instability between LATP and Li metal, a series of interfacial problems, such as high interfacial resistance, undesirable interfacial reaction and dendrite growth are deeply criticized. Herein, a hybrid LiCl/Li x Sn conductive interlayer is constructed through an in situ electrochemical reaction of SnCl 4 with Li metal to effectively improve the compatibility and stability of the Li/LATP interface. LiCl with both electronic insulation and high ionic conductivity can provide fast Li + diffusion channel, block electron injection, avoid side reactions, and effectively inhibit dendrite growth. Li x Sn can reduce interfacial impedance, eliminate local electric field concentration, and significantly improve interfacial wettability. Under the protection of LiCl/Li x Sn hybrid interlayer, the initial resistance of the symmetric battery is reduced from 1066.3 to 133.6 Ω cm −2 , achieving a high critical current density of 1.4 mA cm −2 . At 0.1 mA cm −2 /0.1 mAh cm −2 and 0.2 mA cm −2 /0.2 mAh cm −2 , the symmetric battery can cycle stably for more than 4000 h at 25 °C. Moreover, the full battery displays a high capacity retention ratio of 90.4% after 420 cycles at 0.5 C.</abstract><doi>10.1002/adfm.202401457</doi><orcidid>https://orcid.org/0009-0006-9552-5767</orcidid><orcidid>https://orcid.org/0000-0001-5626-701X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-07, Vol.34 (29)
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_202401457
source Wiley Online Library Journals Frontfile Complete
title A Hybrid LiCl/Li x Sn Conductive Interlayer to Unlock the Potential of Solid‐State Lithium Metal Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20LiCl/Li%20x%20Sn%20Conductive%20Interlayer%20to%20Unlock%20the%20Potential%20of%20Solid%E2%80%90State%20Lithium%20Metal%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Ding,%20Decheng&rft.date=2024-07&rft.volume=34&rft.issue=29&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202401457&rft_dat=%3Ccrossref%3E10_1002_adfm_202401457%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true