Crystalline/Amorphous‐Ru/VO x Phase Engineering Expedites The Alkaline Hydrogen Evolution Kinetics

Active and durable catalysts for hydrogen evolution reaction (HER) are of great significance for developing renewable hydrogen energy. Herein, crystalline/amorphous‐Ru/VO x (c/a‐Ru/VO x ) heterogeneous catalysts are conceived, in which the amorphous VO x exposes more active sites and enhances charge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-05, Vol.34 (19)
Hauptverfasser: Tao, Zhenhua, Zhao, Hongyu, Lv, Ning, Luo, Xu, Yu, Jun, Tan, Xin, Mu, Shichun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page
container_title Advanced functional materials
container_volume 34
creator Tao, Zhenhua
Zhao, Hongyu
Lv, Ning
Luo, Xu
Yu, Jun
Tan, Xin
Mu, Shichun
description Active and durable catalysts for hydrogen evolution reaction (HER) are of great significance for developing renewable hydrogen energy. Herein, crystalline/amorphous‐Ru/VO x (c/a‐Ru/VO x ) heterogeneous catalysts are conceived, in which the amorphous VO x exposes more active sites and enhances charge transport compared with the counterpart with a crystal phase structure, strengthening the electronic interaction between metal‐support. As expected, c/a‐Ru/VO x ‐500 with heat treatment at 500 °C exhibits excellent HER performance under alkaline conditions, with an overpotential of only 33 mV at 10 mA cm −2 and small Tafel slope (27 mV dec −1 ), superior to commercial platinum/carbon (Pt/C) catalysts. Particularly, its mass activity (0.335 A mg Ru −1 ) is 1.5 times greater than that of Pt/C (0.224 A mg Pt −1 ) at an overpotential of 50 mV. Also, it shows good industrial application prospects through tests under high temperature, high alkalinity, and large current conditions. Theoretical calculations unveil that there exists a charge redistribution at c/a‐Ru/VO x heterointerfaces, which makes the surface of Ru takes on an electron‐deficient state, resulting in optimization of adsorption and desorption for different reaction intermediates. This optimized behavior effectively reduces the thermodynamic energy barrier, allowing the catalyst with greatly enhanced HER performance. The exploration provides a promising strategy for designing efficient and durable catalysts for HER.
doi_str_mv 10.1002/adfm.202312987
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202312987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202312987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c847-7b42c52189f6140d99f177b7701fb2ba81a9acb37ab2900fd3a632781c4d53733</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhQdRsFa3rucF0s6dSTOTZQnRFgsVCeIuTOYnjeanzKTS7nwEn9EnMUHp6hwO51wuH0L3QGZACJ1LbZsZJZQBjQW_QBOIIAoYoeLy7OHtGt14_04IcM7CCdKJO_le1nXVmvmy6dx-1x38z9f3y2H-usVH_LyT3uC0LYeCcVVb4vS4N7rqjcfZzuBl_SHHMV6dtOtK0-L0s6sPfdW1-GnI-0r5W3RlZe3N3b9OUfaQZskq2Gwf18lyEygR8oAXIVULCiK2EYREx7Edniw4J2ALWkgBMpaqYFwWNCbEaiYjRrkAFeoF44xN0ezvrHKd987YfO-qRrpTDiQfEeUjovyMiP0Cu8Fb0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Crystalline/Amorphous‐Ru/VO x Phase Engineering Expedites The Alkaline Hydrogen Evolution Kinetics</title><source>Wiley Online Library All Journals</source><creator>Tao, Zhenhua ; Zhao, Hongyu ; Lv, Ning ; Luo, Xu ; Yu, Jun ; Tan, Xin ; Mu, Shichun</creator><creatorcontrib>Tao, Zhenhua ; Zhao, Hongyu ; Lv, Ning ; Luo, Xu ; Yu, Jun ; Tan, Xin ; Mu, Shichun</creatorcontrib><description>Active and durable catalysts for hydrogen evolution reaction (HER) are of great significance for developing renewable hydrogen energy. Herein, crystalline/amorphous‐Ru/VO x (c/a‐Ru/VO x ) heterogeneous catalysts are conceived, in which the amorphous VO x exposes more active sites and enhances charge transport compared with the counterpart with a crystal phase structure, strengthening the electronic interaction between metal‐support. As expected, c/a‐Ru/VO x ‐500 with heat treatment at 500 °C exhibits excellent HER performance under alkaline conditions, with an overpotential of only 33 mV at 10 mA cm −2 and small Tafel slope (27 mV dec −1 ), superior to commercial platinum/carbon (Pt/C) catalysts. Particularly, its mass activity (0.335 A mg Ru −1 ) is 1.5 times greater than that of Pt/C (0.224 A mg Pt −1 ) at an overpotential of 50 mV. Also, it shows good industrial application prospects through tests under high temperature, high alkalinity, and large current conditions. Theoretical calculations unveil that there exists a charge redistribution at c/a‐Ru/VO x heterointerfaces, which makes the surface of Ru takes on an electron‐deficient state, resulting in optimization of adsorption and desorption for different reaction intermediates. This optimized behavior effectively reduces the thermodynamic energy barrier, allowing the catalyst with greatly enhanced HER performance. The exploration provides a promising strategy for designing efficient and durable catalysts for HER.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202312987</identifier><language>eng</language><ispartof>Advanced functional materials, 2024-05, Vol.34 (19)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c847-7b42c52189f6140d99f177b7701fb2ba81a9acb37ab2900fd3a632781c4d53733</citedby><cites>FETCH-LOGICAL-c847-7b42c52189f6140d99f177b7701fb2ba81a9acb37ab2900fd3a632781c4d53733</cites><orcidid>0000-0003-3902-0976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tao, Zhenhua</creatorcontrib><creatorcontrib>Zhao, Hongyu</creatorcontrib><creatorcontrib>Lv, Ning</creatorcontrib><creatorcontrib>Luo, Xu</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><creatorcontrib>Tan, Xin</creatorcontrib><creatorcontrib>Mu, Shichun</creatorcontrib><title>Crystalline/Amorphous‐Ru/VO x Phase Engineering Expedites The Alkaline Hydrogen Evolution Kinetics</title><title>Advanced functional materials</title><description>Active and durable catalysts for hydrogen evolution reaction (HER) are of great significance for developing renewable hydrogen energy. Herein, crystalline/amorphous‐Ru/VO x (c/a‐Ru/VO x ) heterogeneous catalysts are conceived, in which the amorphous VO x exposes more active sites and enhances charge transport compared with the counterpart with a crystal phase structure, strengthening the electronic interaction between metal‐support. As expected, c/a‐Ru/VO x ‐500 with heat treatment at 500 °C exhibits excellent HER performance under alkaline conditions, with an overpotential of only 33 mV at 10 mA cm −2 and small Tafel slope (27 mV dec −1 ), superior to commercial platinum/carbon (Pt/C) catalysts. Particularly, its mass activity (0.335 A mg Ru −1 ) is 1.5 times greater than that of Pt/C (0.224 A mg Pt −1 ) at an overpotential of 50 mV. Also, it shows good industrial application prospects through tests under high temperature, high alkalinity, and large current conditions. Theoretical calculations unveil that there exists a charge redistribution at c/a‐Ru/VO x heterointerfaces, which makes the surface of Ru takes on an electron‐deficient state, resulting in optimization of adsorption and desorption for different reaction intermediates. This optimized behavior effectively reduces the thermodynamic energy barrier, allowing the catalyst with greatly enhanced HER performance. The exploration provides a promising strategy for designing efficient and durable catalysts for HER.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AUhQdRsFa3rucF0s6dSTOTZQnRFgsVCeIuTOYnjeanzKTS7nwEn9EnMUHp6hwO51wuH0L3QGZACJ1LbZsZJZQBjQW_QBOIIAoYoeLy7OHtGt14_04IcM7CCdKJO_le1nXVmvmy6dx-1x38z9f3y2H-usVH_LyT3uC0LYeCcVVb4vS4N7rqjcfZzuBl_SHHMV6dtOtK0-L0s6sPfdW1-GnI-0r5W3RlZe3N3b9OUfaQZskq2Gwf18lyEygR8oAXIVULCiK2EYREx7Edniw4J2ALWkgBMpaqYFwWNCbEaiYjRrkAFeoF44xN0ezvrHKd987YfO-qRrpTDiQfEeUjovyMiP0Cu8Fb0A</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Tao, Zhenhua</creator><creator>Zhao, Hongyu</creator><creator>Lv, Ning</creator><creator>Luo, Xu</creator><creator>Yu, Jun</creator><creator>Tan, Xin</creator><creator>Mu, Shichun</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3902-0976</orcidid></search><sort><creationdate>202405</creationdate><title>Crystalline/Amorphous‐Ru/VO x Phase Engineering Expedites The Alkaline Hydrogen Evolution Kinetics</title><author>Tao, Zhenhua ; Zhao, Hongyu ; Lv, Ning ; Luo, Xu ; Yu, Jun ; Tan, Xin ; Mu, Shichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c847-7b42c52189f6140d99f177b7701fb2ba81a9acb37ab2900fd3a632781c4d53733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Zhenhua</creatorcontrib><creatorcontrib>Zhao, Hongyu</creatorcontrib><creatorcontrib>Lv, Ning</creatorcontrib><creatorcontrib>Luo, Xu</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><creatorcontrib>Tan, Xin</creatorcontrib><creatorcontrib>Mu, Shichun</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Zhenhua</au><au>Zhao, Hongyu</au><au>Lv, Ning</au><au>Luo, Xu</au><au>Yu, Jun</au><au>Tan, Xin</au><au>Mu, Shichun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystalline/Amorphous‐Ru/VO x Phase Engineering Expedites The Alkaline Hydrogen Evolution Kinetics</atitle><jtitle>Advanced functional materials</jtitle><date>2024-05</date><risdate>2024</risdate><volume>34</volume><issue>19</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Active and durable catalysts for hydrogen evolution reaction (HER) are of great significance for developing renewable hydrogen energy. Herein, crystalline/amorphous‐Ru/VO x (c/a‐Ru/VO x ) heterogeneous catalysts are conceived, in which the amorphous VO x exposes more active sites and enhances charge transport compared with the counterpart with a crystal phase structure, strengthening the electronic interaction between metal‐support. As expected, c/a‐Ru/VO x ‐500 with heat treatment at 500 °C exhibits excellent HER performance under alkaline conditions, with an overpotential of only 33 mV at 10 mA cm −2 and small Tafel slope (27 mV dec −1 ), superior to commercial platinum/carbon (Pt/C) catalysts. Particularly, its mass activity (0.335 A mg Ru −1 ) is 1.5 times greater than that of Pt/C (0.224 A mg Pt −1 ) at an overpotential of 50 mV. Also, it shows good industrial application prospects through tests under high temperature, high alkalinity, and large current conditions. Theoretical calculations unveil that there exists a charge redistribution at c/a‐Ru/VO x heterointerfaces, which makes the surface of Ru takes on an electron‐deficient state, resulting in optimization of adsorption and desorption for different reaction intermediates. This optimized behavior effectively reduces the thermodynamic energy barrier, allowing the catalyst with greatly enhanced HER performance. The exploration provides a promising strategy for designing efficient and durable catalysts for HER.</abstract><doi>10.1002/adfm.202312987</doi><orcidid>https://orcid.org/0000-0003-3902-0976</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-05, Vol.34 (19)
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_202312987
source Wiley Online Library All Journals
title Crystalline/Amorphous‐Ru/VO x Phase Engineering Expedites The Alkaline Hydrogen Evolution Kinetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystalline/Amorphous%E2%80%90Ru/VO%20x%20Phase%20Engineering%20Expedites%20The%20Alkaline%20Hydrogen%20Evolution%20Kinetics&rft.jtitle=Advanced%20functional%20materials&rft.au=Tao,%20Zhenhua&rft.date=2024-05&rft.volume=34&rft.issue=19&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202312987&rft_dat=%3Ccrossref%3E10_1002_adfm_202312987%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true