Multifunctional Silane Additive Enhances Inorganic–Organic Compatibility with F‐rich Nature of Interphase to Support High‐Voltage LiNi 0.5 Mn 1.5 O 4 //graphite Pouch Cells

A novel electrolyte additive, 3, 3, 3‐trifluoropropylmethyldimethoxysilane (TFPMDS), is first proposed to modify both the cathode and the anode of lithium‐ion batteries at the same time. Charging/discharging tests demonstrate that the electrolyte with 1 wt% TFPMDS not only greatly improves the capac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-05, Vol.34 (19)
Hauptverfasser: Li, Yuanqin, Li, Xiaoqing, Liu, Lixia, Li, Chengfeng, Xing, Lidan, He, Jiarong, Li, Weishan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page
container_title Advanced functional materials
container_volume 34
creator Li, Yuanqin
Li, Xiaoqing
Liu, Lixia
Li, Chengfeng
Xing, Lidan
He, Jiarong
Li, Weishan
description A novel electrolyte additive, 3, 3, 3‐trifluoropropylmethyldimethoxysilane (TFPMDS), is first proposed to modify both the cathode and the anode of lithium‐ion batteries at the same time. Charging/discharging tests demonstrate that the electrolyte with 1 wt% TFPMDS not only greatly improves the capacity retention of LiNi 0.5 Mn 1.5 O 4 (LNMO)//Li cell (29.6%→90.8%) and graphite//Li cell (68.1%→98.3%), but also successfully ensures the long‐term cycle stability of LNMO//graphite pouch cell at 4.9 V. Further electrochemical measurements combining with spectroscopic characterization and theoretical calculations indicate that TFPMDS additive displays three principal functions: 1) Be preferentially oxidized to build a robust cathode electrolyte interphase (CEI) enriched in F/Si species with F‐rich nature of strong oxidation‐resistance. 2) Be able to scavenge the hazardous HF, F − , and H + through its strong binding with these species and thus to protect LNMO at high‐voltage. 3) Be preferentially adsorbed on the graphite surface to form a “framework”, and to co‐construct an elastic solid electrolyte interphase (SEI) after the reduction of ethylene carbonate. Importantly, the Si─O group within TFPMDS is especially important for constructing a “molecular bridge” at the CEI/SEI interphase coupling the inorganic and organic species to improve its compatibility, stability, and elasticity.
doi_str_mv 10.1002/adfm.202312921
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202312921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202312921</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_adfm_2023129213</originalsourceid><addsrcrecordid>eNqVkE1OwzAUhC0EEuVny_pdoIntlBaWKGpVJNoiFSF2kUmc-CHHtmwH1F2PgMRNOFJPQipQ96xmFvPN4iPkitGEUcpTUdVtwinPGL_l7IgM2JiNhxnlN8eHzl5OyVkIb5SyySQbDcj3otMR686UEa0RGtaohZFwV1UY8V3C1ChhShng3ljfCIPlbvu1-m2Q29aJiK-oMW7gA6OC2W776bFUsBSx8xJs3ZNReqdEkBAtrDvnrI8wx0b122ero2gkPOASgSbXsDDA-ljBCNK08cIpjBIebdd_5lLrcEFOaqGDvPzLc5LMpk_5fFh6G4KXdeE8tsJvCkaLvZlib6Y4mMn-DfwAkRxwHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multifunctional Silane Additive Enhances Inorganic–Organic Compatibility with F‐rich Nature of Interphase to Support High‐Voltage LiNi 0.5 Mn 1.5 O 4 //graphite Pouch Cells</title><source>Access via Wiley Online Library</source><creator>Li, Yuanqin ; Li, Xiaoqing ; Liu, Lixia ; Li, Chengfeng ; Xing, Lidan ; He, Jiarong ; Li, Weishan</creator><creatorcontrib>Li, Yuanqin ; Li, Xiaoqing ; Liu, Lixia ; Li, Chengfeng ; Xing, Lidan ; He, Jiarong ; Li, Weishan</creatorcontrib><description>A novel electrolyte additive, 3, 3, 3‐trifluoropropylmethyldimethoxysilane (TFPMDS), is first proposed to modify both the cathode and the anode of lithium‐ion batteries at the same time. Charging/discharging tests demonstrate that the electrolyte with 1 wt% TFPMDS not only greatly improves the capacity retention of LiNi 0.5 Mn 1.5 O 4 (LNMO)//Li cell (29.6%→90.8%) and graphite//Li cell (68.1%→98.3%), but also successfully ensures the long‐term cycle stability of LNMO//graphite pouch cell at 4.9 V. Further electrochemical measurements combining with spectroscopic characterization and theoretical calculations indicate that TFPMDS additive displays three principal functions: 1) Be preferentially oxidized to build a robust cathode electrolyte interphase (CEI) enriched in F/Si species with F‐rich nature of strong oxidation‐resistance. 2) Be able to scavenge the hazardous HF, F − , and H + through its strong binding with these species and thus to protect LNMO at high‐voltage. 3) Be preferentially adsorbed on the graphite surface to form a “framework”, and to co‐construct an elastic solid electrolyte interphase (SEI) after the reduction of ethylene carbonate. Importantly, the Si─O group within TFPMDS is especially important for constructing a “molecular bridge” at the CEI/SEI interphase coupling the inorganic and organic species to improve its compatibility, stability, and elasticity.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202312921</identifier><language>eng</language><ispartof>Advanced functional materials, 2024-05, Vol.34 (19)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_adfm_2023129213</cites><orcidid>0000-0002-3642-7204 ; 0000-0002-7914-2700 ; 0000-0003-4935-868X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Yuanqin</creatorcontrib><creatorcontrib>Li, Xiaoqing</creatorcontrib><creatorcontrib>Liu, Lixia</creatorcontrib><creatorcontrib>Li, Chengfeng</creatorcontrib><creatorcontrib>Xing, Lidan</creatorcontrib><creatorcontrib>He, Jiarong</creatorcontrib><creatorcontrib>Li, Weishan</creatorcontrib><title>Multifunctional Silane Additive Enhances Inorganic–Organic Compatibility with F‐rich Nature of Interphase to Support High‐Voltage LiNi 0.5 Mn 1.5 O 4 //graphite Pouch Cells</title><title>Advanced functional materials</title><description>A novel electrolyte additive, 3, 3, 3‐trifluoropropylmethyldimethoxysilane (TFPMDS), is first proposed to modify both the cathode and the anode of lithium‐ion batteries at the same time. Charging/discharging tests demonstrate that the electrolyte with 1 wt% TFPMDS not only greatly improves the capacity retention of LiNi 0.5 Mn 1.5 O 4 (LNMO)//Li cell (29.6%→90.8%) and graphite//Li cell (68.1%→98.3%), but also successfully ensures the long‐term cycle stability of LNMO//graphite pouch cell at 4.9 V. Further electrochemical measurements combining with spectroscopic characterization and theoretical calculations indicate that TFPMDS additive displays three principal functions: 1) Be preferentially oxidized to build a robust cathode electrolyte interphase (CEI) enriched in F/Si species with F‐rich nature of strong oxidation‐resistance. 2) Be able to scavenge the hazardous HF, F − , and H + through its strong binding with these species and thus to protect LNMO at high‐voltage. 3) Be preferentially adsorbed on the graphite surface to form a “framework”, and to co‐construct an elastic solid electrolyte interphase (SEI) after the reduction of ethylene carbonate. Importantly, the Si─O group within TFPMDS is especially important for constructing a “molecular bridge” at the CEI/SEI interphase coupling the inorganic and organic species to improve its compatibility, stability, and elasticity.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVkE1OwzAUhC0EEuVny_pdoIntlBaWKGpVJNoiFSF2kUmc-CHHtmwH1F2PgMRNOFJPQipQ96xmFvPN4iPkitGEUcpTUdVtwinPGL_l7IgM2JiNhxnlN8eHzl5OyVkIb5SyySQbDcj3otMR686UEa0RGtaohZFwV1UY8V3C1ChhShng3ljfCIPlbvu1-m2Q29aJiK-oMW7gA6OC2W776bFUsBSx8xJs3ZNReqdEkBAtrDvnrI8wx0b122ero2gkPOASgSbXsDDA-ljBCNK08cIpjBIebdd_5lLrcEFOaqGDvPzLc5LMpk_5fFh6G4KXdeE8tsJvCkaLvZlib6Y4mMn-DfwAkRxwHA</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Li, Yuanqin</creator><creator>Li, Xiaoqing</creator><creator>Liu, Lixia</creator><creator>Li, Chengfeng</creator><creator>Xing, Lidan</creator><creator>He, Jiarong</creator><creator>Li, Weishan</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3642-7204</orcidid><orcidid>https://orcid.org/0000-0002-7914-2700</orcidid><orcidid>https://orcid.org/0000-0003-4935-868X</orcidid></search><sort><creationdate>202405</creationdate><title>Multifunctional Silane Additive Enhances Inorganic–Organic Compatibility with F‐rich Nature of Interphase to Support High‐Voltage LiNi 0.5 Mn 1.5 O 4 //graphite Pouch Cells</title><author>Li, Yuanqin ; Li, Xiaoqing ; Liu, Lixia ; Li, Chengfeng ; Xing, Lidan ; He, Jiarong ; Li, Weishan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_adfm_2023129213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuanqin</creatorcontrib><creatorcontrib>Li, Xiaoqing</creatorcontrib><creatorcontrib>Liu, Lixia</creatorcontrib><creatorcontrib>Li, Chengfeng</creatorcontrib><creatorcontrib>Xing, Lidan</creatorcontrib><creatorcontrib>He, Jiarong</creatorcontrib><creatorcontrib>Li, Weishan</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yuanqin</au><au>Li, Xiaoqing</au><au>Liu, Lixia</au><au>Li, Chengfeng</au><au>Xing, Lidan</au><au>He, Jiarong</au><au>Li, Weishan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifunctional Silane Additive Enhances Inorganic–Organic Compatibility with F‐rich Nature of Interphase to Support High‐Voltage LiNi 0.5 Mn 1.5 O 4 //graphite Pouch Cells</atitle><jtitle>Advanced functional materials</jtitle><date>2024-05</date><risdate>2024</risdate><volume>34</volume><issue>19</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>A novel electrolyte additive, 3, 3, 3‐trifluoropropylmethyldimethoxysilane (TFPMDS), is first proposed to modify both the cathode and the anode of lithium‐ion batteries at the same time. Charging/discharging tests demonstrate that the electrolyte with 1 wt% TFPMDS not only greatly improves the capacity retention of LiNi 0.5 Mn 1.5 O 4 (LNMO)//Li cell (29.6%→90.8%) and graphite//Li cell (68.1%→98.3%), but also successfully ensures the long‐term cycle stability of LNMO//graphite pouch cell at 4.9 V. Further electrochemical measurements combining with spectroscopic characterization and theoretical calculations indicate that TFPMDS additive displays three principal functions: 1) Be preferentially oxidized to build a robust cathode electrolyte interphase (CEI) enriched in F/Si species with F‐rich nature of strong oxidation‐resistance. 2) Be able to scavenge the hazardous HF, F − , and H + through its strong binding with these species and thus to protect LNMO at high‐voltage. 3) Be preferentially adsorbed on the graphite surface to form a “framework”, and to co‐construct an elastic solid electrolyte interphase (SEI) after the reduction of ethylene carbonate. Importantly, the Si─O group within TFPMDS is especially important for constructing a “molecular bridge” at the CEI/SEI interphase coupling the inorganic and organic species to improve its compatibility, stability, and elasticity.</abstract><doi>10.1002/adfm.202312921</doi><orcidid>https://orcid.org/0000-0002-3642-7204</orcidid><orcidid>https://orcid.org/0000-0002-7914-2700</orcidid><orcidid>https://orcid.org/0000-0003-4935-868X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-05, Vol.34 (19)
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_202312921
source Access via Wiley Online Library
title Multifunctional Silane Additive Enhances Inorganic–Organic Compatibility with F‐rich Nature of Interphase to Support High‐Voltage LiNi 0.5 Mn 1.5 O 4 //graphite Pouch Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A15%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifunctional%20Silane%20Additive%20Enhances%20Inorganic%E2%80%93Organic%20Compatibility%20with%20F%E2%80%90rich%20Nature%20of%20Interphase%20to%20Support%20High%E2%80%90Voltage%20LiNi%200.5%20Mn%201.5%20O%204%20//graphite%20Pouch%20Cells&rft.jtitle=Advanced%20functional%20materials&rft.au=Li,%20Yuanqin&rft.date=2024-05&rft.volume=34&rft.issue=19&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202312921&rft_dat=%3Ccrossref%3E10_1002_adfm_202312921%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true