Electronic Synapses Enabled by an Epitaxial SrTiO 3‐δ / Hf 0.5 Z r0.5 O 2 Ferroelectric Field‐Effect Memristor Integrated on Silicon

Synapses play a vital role in information processing, learning, and memory formation in the brain. By emulating the behavior of biological synapses, electronic synaptic devices hold the promise of enabling high‐performance, energy‐efficient, and scalable neuromorphic computing. Ferroelectric memrist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-02, Vol.34 (8)
Hauptverfasser: Siannas, Nikitas, Zacharaki, Christina, Tsipas, Polychronis, Kim, Dong Jik, Hamouda, Wassim, Istrate, Cosmin, Pintilie, Lucian, Schmidbauer, Martin, Dubourdieu, Catherine, Dimoulas, Athanasios
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synapses play a vital role in information processing, learning, and memory formation in the brain. By emulating the behavior of biological synapses, electronic synaptic devices hold the promise of enabling high‐performance, energy‐efficient, and scalable neuromorphic computing. Ferroelectric memristive devices integrate the characteristics of both ferroelectric and memristive materials and present a far‐reaching potential as artificial synapses. Here, it is reported on a new ferroelectric device on silicon, a field‐effect memristor, consisting of an epitaxial ultrathin ferroelectric Hf 0.5 Zr 0.5 O 2 film sandwiched between an epitaxial highly doped oxide semiconductor SrTiO 3‐δ and a top metal. Upon a low voltage of less than 2 V, the field‐effect modulation in the semiconductor enables to access multiple states. The device works in a large time domain ranging from milliseconds down to tens of nanoseconds. By gradually switching the polarization by identical pulses, the ferroelectric diode devices can dynamically adjust the synaptic strength to mimic short‐ and long‐term memory plasticity. Ionic contributions due to redox processes in the oxide semiconductor beneficially influence the device operation and retention.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202311767