Multivalent‐Ion Electrochromic Energy Saving and Storage Devices

Electrochromic devices (ECDs) show promising applications in various fields including energy‐saving smart windows, energy‐recycling batteries/supercapacitors, displays, thermal management, etc. Compared to monovalent cations (H + , Li + , Na + , and K + ), multivalent‐ion carriers (Mg 2+ , Ca 2+ , Z...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-01
Hauptverfasser: Tong, Zhongqiu, Zhu, Xing, Xu, Hongbo, Li, Zhishan, Li, Shaoyuan, Xi, Fengshuo, Kang, Tianxing, Ma, Wenhui, Lee, Chun‐Sing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Advanced functional materials
container_volume
creator Tong, Zhongqiu
Zhu, Xing
Xu, Hongbo
Li, Zhishan
Li, Shaoyuan
Xi, Fengshuo
Kang, Tianxing
Ma, Wenhui
Lee, Chun‐Sing
description Electrochromic devices (ECDs) show promising applications in various fields including energy‐saving smart windows, energy‐recycling batteries/supercapacitors, displays, thermal management, etc. Compared to monovalent cations (H + , Li + , Na + , and K + ), multivalent‐ion carriers (Mg 2+ , Ca 2+ , Zn 2+ , and Al 3+ ) can enable the ECDs with high optical contrast, high energy‐recycling capability, and attractive long‐term stability because of the multiple‐electron transfer redox. Additionally, Mg 2+ , Zn 2+ , and Al 3+ ‐based ECDs assembled with metal anodes are exploited for applications in EC electronics, EC mirrors, flexible devices, etc. Attempts to develop multivalent‐ion ECDs can be traced to 2013. However, since 2017, the research activity in this field has surged in the world. Despite the fascinating achievements, there is still a long way from their maturity due to challenges related to the limited electrode materials and electrolytes, as well as the obscure multivalent‐ion redox mechanisms. This review aims to discuss 1) the EC mechanisms of electrode materials with multivalent ions, 2) the advantageous functionalities of multivalent‐ion ECDs, and 3) strategies developed for exploring electrode materials, electrolytes, and ECD structures. Additionally, future perspectives for remaining challenges and corresponding strategies for developing multivalent‐ion ECDs with designed functionalities are discussed.
doi_str_mv 10.1002/adfm.202308989
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202308989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202308989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c239t-3e77e8415cb8b16a33cc8b4c2e543e56a427bce3be111af3822f63b91e5fdd573</originalsourceid><addsrcrecordid>eNo90L1OwzAUhmELgUQprMy5gQQfnyR2RigBKhUxFCS2yHaOQ1B-kB0ideMSuEauBFWgTt87fcPD2CXwBDgXV7p2fSK4QK4KVRyxBeSQx8iFOj40vJ6ysxDeOQcpMV2wm8fPbmpn3dEw_Xx9r8chKjuykx_tmx_71kblQL7ZRVs9t0MT6aGOttPodUPRLc2tpXDOTpzuAl3875K93JXPq4d483S_Xl1vYiuwmGIkKUmlkFmjDOQa0VplUisoS5GyXKdCGktoCAC0QyWEy9EUQJmr60zikiV_v9aPIXhy1Ydve-13FfBqL1DtBaqDAP4COJBQtw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multivalent‐Ion Electrochromic Energy Saving and Storage Devices</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Tong, Zhongqiu ; Zhu, Xing ; Xu, Hongbo ; Li, Zhishan ; Li, Shaoyuan ; Xi, Fengshuo ; Kang, Tianxing ; Ma, Wenhui ; Lee, Chun‐Sing</creator><creatorcontrib>Tong, Zhongqiu ; Zhu, Xing ; Xu, Hongbo ; Li, Zhishan ; Li, Shaoyuan ; Xi, Fengshuo ; Kang, Tianxing ; Ma, Wenhui ; Lee, Chun‐Sing</creatorcontrib><description>Electrochromic devices (ECDs) show promising applications in various fields including energy‐saving smart windows, energy‐recycling batteries/supercapacitors, displays, thermal management, etc. Compared to monovalent cations (H + , Li + , Na + , and K + ), multivalent‐ion carriers (Mg 2+ , Ca 2+ , Zn 2+ , and Al 3+ ) can enable the ECDs with high optical contrast, high energy‐recycling capability, and attractive long‐term stability because of the multiple‐electron transfer redox. Additionally, Mg 2+ , Zn 2+ , and Al 3+ ‐based ECDs assembled with metal anodes are exploited for applications in EC electronics, EC mirrors, flexible devices, etc. Attempts to develop multivalent‐ion ECDs can be traced to 2013. However, since 2017, the research activity in this field has surged in the world. Despite the fascinating achievements, there is still a long way from their maturity due to challenges related to the limited electrode materials and electrolytes, as well as the obscure multivalent‐ion redox mechanisms. This review aims to discuss 1) the EC mechanisms of electrode materials with multivalent ions, 2) the advantageous functionalities of multivalent‐ion ECDs, and 3) strategies developed for exploring electrode materials, electrolytes, and ECD structures. Additionally, future perspectives for remaining challenges and corresponding strategies for developing multivalent‐ion ECDs with designed functionalities are discussed.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202308989</identifier><language>eng</language><ispartof>Advanced functional materials, 2024-01</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c239t-3e77e8415cb8b16a33cc8b4c2e543e56a427bce3be111af3822f63b91e5fdd573</citedby><cites>FETCH-LOGICAL-c239t-3e77e8415cb8b16a33cc8b4c2e543e56a427bce3be111af3822f63b91e5fdd573</cites><orcidid>0000-0001-6557-453X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tong, Zhongqiu</creatorcontrib><creatorcontrib>Zhu, Xing</creatorcontrib><creatorcontrib>Xu, Hongbo</creatorcontrib><creatorcontrib>Li, Zhishan</creatorcontrib><creatorcontrib>Li, Shaoyuan</creatorcontrib><creatorcontrib>Xi, Fengshuo</creatorcontrib><creatorcontrib>Kang, Tianxing</creatorcontrib><creatorcontrib>Ma, Wenhui</creatorcontrib><creatorcontrib>Lee, Chun‐Sing</creatorcontrib><title>Multivalent‐Ion Electrochromic Energy Saving and Storage Devices</title><title>Advanced functional materials</title><description>Electrochromic devices (ECDs) show promising applications in various fields including energy‐saving smart windows, energy‐recycling batteries/supercapacitors, displays, thermal management, etc. Compared to monovalent cations (H + , Li + , Na + , and K + ), multivalent‐ion carriers (Mg 2+ , Ca 2+ , Zn 2+ , and Al 3+ ) can enable the ECDs with high optical contrast, high energy‐recycling capability, and attractive long‐term stability because of the multiple‐electron transfer redox. Additionally, Mg 2+ , Zn 2+ , and Al 3+ ‐based ECDs assembled with metal anodes are exploited for applications in EC electronics, EC mirrors, flexible devices, etc. Attempts to develop multivalent‐ion ECDs can be traced to 2013. However, since 2017, the research activity in this field has surged in the world. Despite the fascinating achievements, there is still a long way from their maturity due to challenges related to the limited electrode materials and electrolytes, as well as the obscure multivalent‐ion redox mechanisms. This review aims to discuss 1) the EC mechanisms of electrode materials with multivalent ions, 2) the advantageous functionalities of multivalent‐ion ECDs, and 3) strategies developed for exploring electrode materials, electrolytes, and ECD structures. Additionally, future perspectives for remaining challenges and corresponding strategies for developing multivalent‐ion ECDs with designed functionalities are discussed.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo90L1OwzAUhmELgUQprMy5gQQfnyR2RigBKhUxFCS2yHaOQ1B-kB0ideMSuEauBFWgTt87fcPD2CXwBDgXV7p2fSK4QK4KVRyxBeSQx8iFOj40vJ6ysxDeOQcpMV2wm8fPbmpn3dEw_Xx9r8chKjuykx_tmx_71kblQL7ZRVs9t0MT6aGOttPodUPRLc2tpXDOTpzuAl3875K93JXPq4d483S_Xl1vYiuwmGIkKUmlkFmjDOQa0VplUisoS5GyXKdCGktoCAC0QyWEy9EUQJmr60zikiV_v9aPIXhy1Ydve-13FfBqL1DtBaqDAP4COJBQtw</recordid><startdate>20240104</startdate><enddate>20240104</enddate><creator>Tong, Zhongqiu</creator><creator>Zhu, Xing</creator><creator>Xu, Hongbo</creator><creator>Li, Zhishan</creator><creator>Li, Shaoyuan</creator><creator>Xi, Fengshuo</creator><creator>Kang, Tianxing</creator><creator>Ma, Wenhui</creator><creator>Lee, Chun‐Sing</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6557-453X</orcidid></search><sort><creationdate>20240104</creationdate><title>Multivalent‐Ion Electrochromic Energy Saving and Storage Devices</title><author>Tong, Zhongqiu ; Zhu, Xing ; Xu, Hongbo ; Li, Zhishan ; Li, Shaoyuan ; Xi, Fengshuo ; Kang, Tianxing ; Ma, Wenhui ; Lee, Chun‐Sing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c239t-3e77e8415cb8b16a33cc8b4c2e543e56a427bce3be111af3822f63b91e5fdd573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Zhongqiu</creatorcontrib><creatorcontrib>Zhu, Xing</creatorcontrib><creatorcontrib>Xu, Hongbo</creatorcontrib><creatorcontrib>Li, Zhishan</creatorcontrib><creatorcontrib>Li, Shaoyuan</creatorcontrib><creatorcontrib>Xi, Fengshuo</creatorcontrib><creatorcontrib>Kang, Tianxing</creatorcontrib><creatorcontrib>Ma, Wenhui</creatorcontrib><creatorcontrib>Lee, Chun‐Sing</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Zhongqiu</au><au>Zhu, Xing</au><au>Xu, Hongbo</au><au>Li, Zhishan</au><au>Li, Shaoyuan</au><au>Xi, Fengshuo</au><au>Kang, Tianxing</au><au>Ma, Wenhui</au><au>Lee, Chun‐Sing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivalent‐Ion Electrochromic Energy Saving and Storage Devices</atitle><jtitle>Advanced functional materials</jtitle><date>2024-01-04</date><risdate>2024</risdate><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Electrochromic devices (ECDs) show promising applications in various fields including energy‐saving smart windows, energy‐recycling batteries/supercapacitors, displays, thermal management, etc. Compared to monovalent cations (H + , Li + , Na + , and K + ), multivalent‐ion carriers (Mg 2+ , Ca 2+ , Zn 2+ , and Al 3+ ) can enable the ECDs with high optical contrast, high energy‐recycling capability, and attractive long‐term stability because of the multiple‐electron transfer redox. Additionally, Mg 2+ , Zn 2+ , and Al 3+ ‐based ECDs assembled with metal anodes are exploited for applications in EC electronics, EC mirrors, flexible devices, etc. Attempts to develop multivalent‐ion ECDs can be traced to 2013. However, since 2017, the research activity in this field has surged in the world. Despite the fascinating achievements, there is still a long way from their maturity due to challenges related to the limited electrode materials and electrolytes, as well as the obscure multivalent‐ion redox mechanisms. This review aims to discuss 1) the EC mechanisms of electrode materials with multivalent ions, 2) the advantageous functionalities of multivalent‐ion ECDs, and 3) strategies developed for exploring electrode materials, electrolytes, and ECD structures. Additionally, future perspectives for remaining challenges and corresponding strategies for developing multivalent‐ion ECDs with designed functionalities are discussed.</abstract><doi>10.1002/adfm.202308989</doi><orcidid>https://orcid.org/0000-0001-6557-453X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-01
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_202308989
source Wiley Online Library - AutoHoldings Journals
title Multivalent‐Ion Electrochromic Energy Saving and Storage Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T05%3A44%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivalent%E2%80%90Ion%20Electrochromic%20Energy%20Saving%20and%20Storage%20Devices&rft.jtitle=Advanced%20functional%20materials&rft.au=Tong,%20Zhongqiu&rft.date=2024-01-04&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202308989&rft_dat=%3Ccrossref%3E10_1002_adfm_202308989%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true