In‐Plane Nanowire Growth of Topological Crystalline Insulator Pb 1 − x Sn x Te

Predicted topological crystalline insulators such as Pb 1 − x Sn x Te are an interesting candidate for applications in quantum technology, as they can host spin‐polarized surface states. Moreover, in the nanowire geometry, a quasi‐1D system can be realized with potential applications exploiting Majo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-12, Vol.33 (50)
Hauptverfasser: Schellingerhout, Sander G., Bergamaschini, Roberto, Verheijen, Marcel A., Montalenti, Francesco, Miglio, Leo, Bakkers, Erik P.A.M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 50
container_start_page
container_title Advanced functional materials
container_volume 33
creator Schellingerhout, Sander G.
Bergamaschini, Roberto
Verheijen, Marcel A.
Montalenti, Francesco
Miglio, Leo
Bakkers, Erik P.A.M.
description Predicted topological crystalline insulators such as Pb 1 − x Sn x Te are an interesting candidate for applications in quantum technology, as they can host spin‐polarized surface states. Moreover, in the nanowire geometry, a quasi‐1D system can be realized with potential applications exploiting Majorana fermions. Herein, the selective area growth of Pb 1 − x Sn x Te islands and nanowires over the full range of x is demonstrated, and their in‐depth growth dynamics and faceting are analyzed. By transmission electron microscopy, the single‐crystalline and defect‐free nature of the grown material and the homogeneous, controllable Pb/Sn ratio in the nanowires is confirmed. With support of phase‐field growth simulations, it is shown that the crystal faceting mainly follows the driving force of surface energy minimization, favoring the lowest energy {200} surfaces. A kinetic enhancement of adatom incorporation on {110} facets is recognized to limit their extension with respect to {200} and {111} facets. After inspecting all possible in‐plane orientations, we identify the 〈110〉 directions as the optimal candidate for the growth of high‐quality and perfectly straight Pb 1 − x Sn x Te nanowires, enabling the design of complex networks due to their threefold symmetry. This work opens the way to systematic transport investigation of the carrier density in Pb 1 − x Sn x Te nanowires and can facilitate further optimization of the Pb 1 − x Sn x Te system.
doi_str_mv 10.1002/adfm.202305542
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202305542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_202305542</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_adfm_2023055423</originalsourceid><addsrcrecordid>eNqVjrsKwjAYhYMoWC-r8_8CrX9Sb7t4W0S0g1uImmolJiWpqJujo_iIfRItiLvLOWf4DnyEtCgGFJG1xS4-BQxZiN1uh5WIR3u054fIBuXfpusqqTl3RKT9ftjxyHKm8_tzoYSWMBfaXBIrYWLNJTuAiSEyqVFmn2yFgqG9uUwolXzQmXZnJTJjYbEBCvnjBVdY6U9EskEqsVBONr9dJ8F4FA2n_tYa56yMeWqTk7A3TpEX5rww5z_z8O_DG0OUTL0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In‐Plane Nanowire Growth of Topological Crystalline Insulator Pb 1 − x Sn x Te</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schellingerhout, Sander G. ; Bergamaschini, Roberto ; Verheijen, Marcel A. ; Montalenti, Francesco ; Miglio, Leo ; Bakkers, Erik P.A.M.</creator><creatorcontrib>Schellingerhout, Sander G. ; Bergamaschini, Roberto ; Verheijen, Marcel A. ; Montalenti, Francesco ; Miglio, Leo ; Bakkers, Erik P.A.M.</creatorcontrib><description>Predicted topological crystalline insulators such as Pb 1 − x Sn x Te are an interesting candidate for applications in quantum technology, as they can host spin‐polarized surface states. Moreover, in the nanowire geometry, a quasi‐1D system can be realized with potential applications exploiting Majorana fermions. Herein, the selective area growth of Pb 1 − x Sn x Te islands and nanowires over the full range of x is demonstrated, and their in‐depth growth dynamics and faceting are analyzed. By transmission electron microscopy, the single‐crystalline and defect‐free nature of the grown material and the homogeneous, controllable Pb/Sn ratio in the nanowires is confirmed. With support of phase‐field growth simulations, it is shown that the crystal faceting mainly follows the driving force of surface energy minimization, favoring the lowest energy {200} surfaces. A kinetic enhancement of adatom incorporation on {110} facets is recognized to limit their extension with respect to {200} and {111} facets. After inspecting all possible in‐plane orientations, we identify the 〈110〉 directions as the optimal candidate for the growth of high‐quality and perfectly straight Pb 1 − x Sn x Te nanowires, enabling the design of complex networks due to their threefold symmetry. This work opens the way to systematic transport investigation of the carrier density in Pb 1 − x Sn x Te nanowires and can facilitate further optimization of the Pb 1 − x Sn x Te system.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202305542</identifier><language>eng</language><ispartof>Advanced functional materials, 2023-12, Vol.33 (50)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_adfm_2023055423</cites><orcidid>0000-0002-3686-2273 ; 0000-0002-8749-7755 ; 0000-0002-7093-3362 ; 0000-0002-1329-527X ; 0000-0002-8264-6862 ; 0000-0001-7854-8269</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Schellingerhout, Sander G.</creatorcontrib><creatorcontrib>Bergamaschini, Roberto</creatorcontrib><creatorcontrib>Verheijen, Marcel A.</creatorcontrib><creatorcontrib>Montalenti, Francesco</creatorcontrib><creatorcontrib>Miglio, Leo</creatorcontrib><creatorcontrib>Bakkers, Erik P.A.M.</creatorcontrib><title>In‐Plane Nanowire Growth of Topological Crystalline Insulator Pb 1 − x Sn x Te</title><title>Advanced functional materials</title><description>Predicted topological crystalline insulators such as Pb 1 − x Sn x Te are an interesting candidate for applications in quantum technology, as they can host spin‐polarized surface states. Moreover, in the nanowire geometry, a quasi‐1D system can be realized with potential applications exploiting Majorana fermions. Herein, the selective area growth of Pb 1 − x Sn x Te islands and nanowires over the full range of x is demonstrated, and their in‐depth growth dynamics and faceting are analyzed. By transmission electron microscopy, the single‐crystalline and defect‐free nature of the grown material and the homogeneous, controllable Pb/Sn ratio in the nanowires is confirmed. With support of phase‐field growth simulations, it is shown that the crystal faceting mainly follows the driving force of surface energy minimization, favoring the lowest energy {200} surfaces. A kinetic enhancement of adatom incorporation on {110} facets is recognized to limit their extension with respect to {200} and {111} facets. After inspecting all possible in‐plane orientations, we identify the 〈110〉 directions as the optimal candidate for the growth of high‐quality and perfectly straight Pb 1 − x Sn x Te nanowires, enabling the design of complex networks due to their threefold symmetry. This work opens the way to systematic transport investigation of the carrier density in Pb 1 − x Sn x Te nanowires and can facilitate further optimization of the Pb 1 − x Sn x Te system.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqVjrsKwjAYhYMoWC-r8_8CrX9Sb7t4W0S0g1uImmolJiWpqJujo_iIfRItiLvLOWf4DnyEtCgGFJG1xS4-BQxZiN1uh5WIR3u054fIBuXfpusqqTl3RKT9ftjxyHKm8_tzoYSWMBfaXBIrYWLNJTuAiSEyqVFmn2yFgqG9uUwolXzQmXZnJTJjYbEBCvnjBVdY6U9EskEqsVBONr9dJ8F4FA2n_tYa56yMeWqTk7A3TpEX5rww5z_z8O_DG0OUTL0</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Schellingerhout, Sander G.</creator><creator>Bergamaschini, Roberto</creator><creator>Verheijen, Marcel A.</creator><creator>Montalenti, Francesco</creator><creator>Miglio, Leo</creator><creator>Bakkers, Erik P.A.M.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3686-2273</orcidid><orcidid>https://orcid.org/0000-0002-8749-7755</orcidid><orcidid>https://orcid.org/0000-0002-7093-3362</orcidid><orcidid>https://orcid.org/0000-0002-1329-527X</orcidid><orcidid>https://orcid.org/0000-0002-8264-6862</orcidid><orcidid>https://orcid.org/0000-0001-7854-8269</orcidid></search><sort><creationdate>202312</creationdate><title>In‐Plane Nanowire Growth of Topological Crystalline Insulator Pb 1 − x Sn x Te</title><author>Schellingerhout, Sander G. ; Bergamaschini, Roberto ; Verheijen, Marcel A. ; Montalenti, Francesco ; Miglio, Leo ; Bakkers, Erik P.A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_adfm_2023055423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schellingerhout, Sander G.</creatorcontrib><creatorcontrib>Bergamaschini, Roberto</creatorcontrib><creatorcontrib>Verheijen, Marcel A.</creatorcontrib><creatorcontrib>Montalenti, Francesco</creatorcontrib><creatorcontrib>Miglio, Leo</creatorcontrib><creatorcontrib>Bakkers, Erik P.A.M.</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schellingerhout, Sander G.</au><au>Bergamaschini, Roberto</au><au>Verheijen, Marcel A.</au><au>Montalenti, Francesco</au><au>Miglio, Leo</au><au>Bakkers, Erik P.A.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In‐Plane Nanowire Growth of Topological Crystalline Insulator Pb 1 − x Sn x Te</atitle><jtitle>Advanced functional materials</jtitle><date>2023-12</date><risdate>2023</risdate><volume>33</volume><issue>50</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Predicted topological crystalline insulators such as Pb 1 − x Sn x Te are an interesting candidate for applications in quantum technology, as they can host spin‐polarized surface states. Moreover, in the nanowire geometry, a quasi‐1D system can be realized with potential applications exploiting Majorana fermions. Herein, the selective area growth of Pb 1 − x Sn x Te islands and nanowires over the full range of x is demonstrated, and their in‐depth growth dynamics and faceting are analyzed. By transmission electron microscopy, the single‐crystalline and defect‐free nature of the grown material and the homogeneous, controllable Pb/Sn ratio in the nanowires is confirmed. With support of phase‐field growth simulations, it is shown that the crystal faceting mainly follows the driving force of surface energy minimization, favoring the lowest energy {200} surfaces. A kinetic enhancement of adatom incorporation on {110} facets is recognized to limit their extension with respect to {200} and {111} facets. After inspecting all possible in‐plane orientations, we identify the 〈110〉 directions as the optimal candidate for the growth of high‐quality and perfectly straight Pb 1 − x Sn x Te nanowires, enabling the design of complex networks due to their threefold symmetry. This work opens the way to systematic transport investigation of the carrier density in Pb 1 − x Sn x Te nanowires and can facilitate further optimization of the Pb 1 − x Sn x Te system.</abstract><doi>10.1002/adfm.202305542</doi><orcidid>https://orcid.org/0000-0002-3686-2273</orcidid><orcidid>https://orcid.org/0000-0002-8749-7755</orcidid><orcidid>https://orcid.org/0000-0002-7093-3362</orcidid><orcidid>https://orcid.org/0000-0002-1329-527X</orcidid><orcidid>https://orcid.org/0000-0002-8264-6862</orcidid><orcidid>https://orcid.org/0000-0001-7854-8269</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-12, Vol.33 (50)
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_202305542
source Wiley Online Library Journals Frontfile Complete
title In‐Plane Nanowire Growth of Topological Crystalline Insulator Pb 1 − x Sn x Te
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A56%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%E2%80%90Plane%20Nanowire%20Growth%20of%20Topological%20Crystalline%20Insulator%20Pb%201%20%E2%88%92%20x%20Sn%20x%20Te&rft.jtitle=Advanced%20functional%20materials&rft.au=Schellingerhout,%20Sander%20G.&rft.date=2023-12&rft.volume=33&rft.issue=50&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202305542&rft_dat=%3Ccrossref%3E10_1002_adfm_202305542%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true