Polydopamine Sensors: Polydopamine Sensors of Bacterial Hypoxia via Fluorescence Coupling (Adv. Funct. Mater. 9/2021)

In article number 2007993, Haeshin Lee, Hyun Jung Chung, and co‐workers demonstrate the polydopamine–oxygen relationship using a fluorescence coupling strategy during bacterial growth‐induced hypoxia. With the exponential growth of bacteria, oxygen is consumed and leads to the inhibition of dopamine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-02, Vol.31 (9), p.n/a
Hauptverfasser: Lee, Joo Hoon, Ryu, Jea Sung, Kang, Yoo Kyung, Lee, Haeshin, Chung, Hyun Jung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Advanced functional materials
container_volume 31
creator Lee, Joo Hoon
Ryu, Jea Sung
Kang, Yoo Kyung
Lee, Haeshin
Chung, Hyun Jung
description In article number 2007993, Haeshin Lee, Hyun Jung Chung, and co‐workers demonstrate the polydopamine–oxygen relationship using a fluorescence coupling strategy during bacterial growth‐induced hypoxia. With the exponential growth of bacteria, oxygen is consumed and leads to the inhibition of dopamine polymerization, which is directly measured by fluorescent nanoparticle sensors. The current method can be applied as a simple diagnostic assay to detect bacterial growth and antibiotic resistance.
doi_str_mv 10.1002/adfm.202170056
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202170056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADFM202170056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1746-dd069fd2e3f2305218e7349e8822d473dbf552f398ad8b510106cd517cb41c9a3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFavnveoh6Qzu_n0VquxQouCCt7Cdj8kkmbDblPNvzelohfBwzDDMM_w8hByjhAiAJsIZdYhA4YpQJwckBEmmAQcWHb4M-PrMTnx_h0A05RHI9I92rpXthXrqtH0STfeOn9F_9pSa-i1kBvtKlHTed_az0rQ7VBF3VmnvdSN1HRmu7aumjd6MVXbkBZdIzchXYqBC2k-2QW8PCVHRtRen333MXkpbp9n82DxcHc_my4CiWmUBEpBkhvFNDeMQ8ww00PoXGcZYypKuVqZOGaG55lQ2SpGQEikijGVqwhlLviYhPu_0lnvnTZl66q1cH2JUO6klTtp5Y-0Acj3wEdV6_6f63J6Uyx_2S_Q0XA4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Polydopamine Sensors: Polydopamine Sensors of Bacterial Hypoxia via Fluorescence Coupling (Adv. Funct. Mater. 9/2021)</title><source>Wiley Online Library Journals</source><creator>Lee, Joo Hoon ; Ryu, Jea Sung ; Kang, Yoo Kyung ; Lee, Haeshin ; Chung, Hyun Jung</creator><creatorcontrib>Lee, Joo Hoon ; Ryu, Jea Sung ; Kang, Yoo Kyung ; Lee, Haeshin ; Chung, Hyun Jung</creatorcontrib><description>In article number 2007993, Haeshin Lee, Hyun Jung Chung, and co‐workers demonstrate the polydopamine–oxygen relationship using a fluorescence coupling strategy during bacterial growth‐induced hypoxia. With the exponential growth of bacteria, oxygen is consumed and leads to the inhibition of dopamine polymerization, which is directly measured by fluorescent nanoparticle sensors. The current method can be applied as a simple diagnostic assay to detect bacterial growth and antibiotic resistance.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202170056</identifier><language>eng</language><subject>bacterial growth ; fluorescence sensors ; nanoparticles ; oxygen ; polydopamine</subject><ispartof>Advanced functional materials, 2021-02, Vol.31 (9), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1746-dd069fd2e3f2305218e7349e8822d473dbf552f398ad8b510106cd517cb41c9a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202170056$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202170056$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lee, Joo Hoon</creatorcontrib><creatorcontrib>Ryu, Jea Sung</creatorcontrib><creatorcontrib>Kang, Yoo Kyung</creatorcontrib><creatorcontrib>Lee, Haeshin</creatorcontrib><creatorcontrib>Chung, Hyun Jung</creatorcontrib><title>Polydopamine Sensors: Polydopamine Sensors of Bacterial Hypoxia via Fluorescence Coupling (Adv. Funct. Mater. 9/2021)</title><title>Advanced functional materials</title><description>In article number 2007993, Haeshin Lee, Hyun Jung Chung, and co‐workers demonstrate the polydopamine–oxygen relationship using a fluorescence coupling strategy during bacterial growth‐induced hypoxia. With the exponential growth of bacteria, oxygen is consumed and leads to the inhibition of dopamine polymerization, which is directly measured by fluorescent nanoparticle sensors. The current method can be applied as a simple diagnostic assay to detect bacterial growth and antibiotic resistance.</description><subject>bacterial growth</subject><subject>fluorescence sensors</subject><subject>nanoparticles</subject><subject>oxygen</subject><subject>polydopamine</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFavnveoh6Qzu_n0VquxQouCCt7Cdj8kkmbDblPNvzelohfBwzDDMM_w8hByjhAiAJsIZdYhA4YpQJwckBEmmAQcWHb4M-PrMTnx_h0A05RHI9I92rpXthXrqtH0STfeOn9F_9pSa-i1kBvtKlHTed_az0rQ7VBF3VmnvdSN1HRmu7aumjd6MVXbkBZdIzchXYqBC2k-2QW8PCVHRtRen333MXkpbp9n82DxcHc_my4CiWmUBEpBkhvFNDeMQ8ww00PoXGcZYypKuVqZOGaG55lQ2SpGQEikijGVqwhlLviYhPu_0lnvnTZl66q1cH2JUO6klTtp5Y-0Acj3wEdV6_6f63J6Uyx_2S_Q0XA4</recordid><startdate>20210224</startdate><enddate>20210224</enddate><creator>Lee, Joo Hoon</creator><creator>Ryu, Jea Sung</creator><creator>Kang, Yoo Kyung</creator><creator>Lee, Haeshin</creator><creator>Chung, Hyun Jung</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210224</creationdate><title>Polydopamine Sensors: Polydopamine Sensors of Bacterial Hypoxia via Fluorescence Coupling (Adv. Funct. Mater. 9/2021)</title><author>Lee, Joo Hoon ; Ryu, Jea Sung ; Kang, Yoo Kyung ; Lee, Haeshin ; Chung, Hyun Jung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1746-dd069fd2e3f2305218e7349e8822d473dbf552f398ad8b510106cd517cb41c9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>bacterial growth</topic><topic>fluorescence sensors</topic><topic>nanoparticles</topic><topic>oxygen</topic><topic>polydopamine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Joo Hoon</creatorcontrib><creatorcontrib>Ryu, Jea Sung</creatorcontrib><creatorcontrib>Kang, Yoo Kyung</creatorcontrib><creatorcontrib>Lee, Haeshin</creatorcontrib><creatorcontrib>Chung, Hyun Jung</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Joo Hoon</au><au>Ryu, Jea Sung</au><au>Kang, Yoo Kyung</au><au>Lee, Haeshin</au><au>Chung, Hyun Jung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polydopamine Sensors: Polydopamine Sensors of Bacterial Hypoxia via Fluorescence Coupling (Adv. Funct. Mater. 9/2021)</atitle><jtitle>Advanced functional materials</jtitle><date>2021-02-24</date><risdate>2021</risdate><volume>31</volume><issue>9</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>In article number 2007993, Haeshin Lee, Hyun Jung Chung, and co‐workers demonstrate the polydopamine–oxygen relationship using a fluorescence coupling strategy during bacterial growth‐induced hypoxia. With the exponential growth of bacteria, oxygen is consumed and leads to the inhibition of dopamine polymerization, which is directly measured by fluorescent nanoparticle sensors. The current method can be applied as a simple diagnostic assay to detect bacterial growth and antibiotic resistance.</abstract><doi>10.1002/adfm.202170056</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-02, Vol.31 (9), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_202170056
source Wiley Online Library Journals
subjects bacterial growth
fluorescence sensors
nanoparticles
oxygen
polydopamine
title Polydopamine Sensors: Polydopamine Sensors of Bacterial Hypoxia via Fluorescence Coupling (Adv. Funct. Mater. 9/2021)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polydopamine%20Sensors:%20Polydopamine%20Sensors%20of%20Bacterial%20Hypoxia%20via%20Fluorescence%20Coupling%20(Adv.%20Funct.%20Mater.%209/2021)&rft.jtitle=Advanced%20functional%20materials&rft.au=Lee,%20Joo%20Hoon&rft.date=2021-02-24&rft.volume=31&rft.issue=9&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202170056&rft_dat=%3Cwiley_cross%3EADFM202170056%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true