Ion Pair Uptake in Ion Gel Devices Based on Organic Mixed Ionic–Electronic Conductors
In organic mixed ionic–electronic conductors (OMIECs), it is critical to understand the motion of ions in the electrolyte and OMIEC. Generally, the focus is on the movement of net charge during gating, and the motion of neutral anion–cation pairs is seldom considered. Uptake of mobile ion pairs by t...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-11, Vol.31 (47), p.n/a, Article 2104301 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 47 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Quill, Tyler J. LeCroy, Garrett Melianas, Armantas Rawlings, Dakota Thiburce, Quentin Sheelamanthula, Rajendar Cheng, Christina Tuchman, Yaakov Keene, Scott T. McCulloch, Iain Segalman, Rachel A. Chabinyc, Michael L. Salleo, Alberto |
description | In organic mixed ionic–electronic conductors (OMIECs), it is critical to understand the motion of ions in the electrolyte and OMIEC. Generally, the focus is on the movement of net charge during gating, and the motion of neutral anion–cation pairs is seldom considered. Uptake of mobile ion pairs by the semiconductor before electrochemical gating (passive uptake) can be advantageous as this can improve device speed, and both ions can participate in charge compensation during gating. Here, such passive ion pair uptake in high‐speed solid‐state devices is demonstrated using an ion gel electrolyte. This is compared to a polymerized ionic liquid (PIL) electrolyte to understand how ion pair uptake affects device characteristics. Using X‐ray photoelectron spectroscopy, the passive uptake of ion pairs from the ion gel into the OMIEC is detected, whereas no uptake is observed with a PIL electrolyte. This is corroborated by X‐ray scattering, which reveals morphological changes to the OMIEC from the uptake of ion pairs. With in situ Raman, a reorganization of both anions and cations is then observed during gating. Finally, the speed and retention of OMIEC‐based neuromorphic devices are tuned by controlling the freedom of charge motion in the electrolyte.
The passive uptake of anion–cation pairs from a solid‐state ion gel electrolyte into an organic mixed ionic–electronic conductor (OMIEC) is reported. The structural effects of the passive ion uptake are investigated as well as the consequences on doping of the OMIEC. Finally, neuromorphic devices are fabricated to compare device speed and state retention with and without passive ion uptake. |
doi_str_mv | 10.1002/adfm.202104301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202104301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598381664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3441-d6f9ce40e6d647f774916eb6ee55d7cbdbd20b54cb12fdb2590e62bcf72b6abc3</originalsourceid><addsrcrecordid>eNqNkM1OGzEURkcVlRqg264tWFYJtsfjmVnSSQKREsGiCHaWf-4UQ7BT26Flxzv0DfskOASly7Ky_emc60-3KL4QPCIY0xNp-ocRxZRgVmLyoRgQTviwxLTZ293JzadiP8Y7jEldl2xQXM-8Q5fSBnS1SvIekHVoE53BEo3h0WqI6JuMYFAOL8IP6axGC_s7Bxmz-u_zn8kSdAqbB-q8M2udfIiHxcdeLiN8fjsPiqvp5Ht3PpxfnM260_lQl4yRoeF9q4Fh4Iazuq9r1hIOigNUlam1MspQrCqmFaG9UbRqM0qV7muquFS6PCiOtnN9TFZEbRPoW-2dy50EaQiraJ2h4y20Cv7nGmISd34dXO4l8sSmbAjnLFOjLaWDjzFAL1bBPsjwJAgWmw2LzYbFbsNZ-LoVfoHyff4bnIadhDHmDW8pzyp-pZv3051NMlnvOr92Kavtm2qX8PSfWuJ0PF38K_kCDOagUQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598381664</pqid></control><display><type>article</type><title>Ion Pair Uptake in Ion Gel Devices Based on Organic Mixed Ionic–Electronic Conductors</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Quill, Tyler J. ; LeCroy, Garrett ; Melianas, Armantas ; Rawlings, Dakota ; Thiburce, Quentin ; Sheelamanthula, Rajendar ; Cheng, Christina ; Tuchman, Yaakov ; Keene, Scott T. ; McCulloch, Iain ; Segalman, Rachel A. ; Chabinyc, Michael L. ; Salleo, Alberto</creator><creatorcontrib>Quill, Tyler J. ; LeCroy, Garrett ; Melianas, Armantas ; Rawlings, Dakota ; Thiburce, Quentin ; Sheelamanthula, Rajendar ; Cheng, Christina ; Tuchman, Yaakov ; Keene, Scott T. ; McCulloch, Iain ; Segalman, Rachel A. ; Chabinyc, Michael L. ; Salleo, Alberto</creatorcontrib><description>In organic mixed ionic–electronic conductors (OMIECs), it is critical to understand the motion of ions in the electrolyte and OMIEC. Generally, the focus is on the movement of net charge during gating, and the motion of neutral anion–cation pairs is seldom considered. Uptake of mobile ion pairs by the semiconductor before electrochemical gating (passive uptake) can be advantageous as this can improve device speed, and both ions can participate in charge compensation during gating. Here, such passive ion pair uptake in high‐speed solid‐state devices is demonstrated using an ion gel electrolyte. This is compared to a polymerized ionic liquid (PIL) electrolyte to understand how ion pair uptake affects device characteristics. Using X‐ray photoelectron spectroscopy, the passive uptake of ion pairs from the ion gel into the OMIEC is detected, whereas no uptake is observed with a PIL electrolyte. This is corroborated by X‐ray scattering, which reveals morphological changes to the OMIEC from the uptake of ion pairs. With in situ Raman, a reorganization of both anions and cations is then observed during gating. Finally, the speed and retention of OMIEC‐based neuromorphic devices are tuned by controlling the freedom of charge motion in the electrolyte.
The passive uptake of anion–cation pairs from a solid‐state ion gel electrolyte into an organic mixed ionic–electronic conductor (OMIEC) is reported. The structural effects of the passive ion uptake are investigated as well as the consequences on doping of the OMIEC. Finally, neuromorphic devices are fabricated to compare device speed and state retention with and without passive ion uptake.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202104301</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Anions ; artificial synapses ; Cations ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; Conductors ; Electrolytes ; Ion pairs ; ionic liquid intercalation ; Ionic liquids ; Ions ; Materials Science ; Materials Science, Multidisciplinary ; mixed conductors ; Movement ; Nanoscience & Nanotechnology ; organic semiconductors ; Photoelectrons ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Science & Technology ; Science & Technology - Other Topics ; Technology</subject><ispartof>Advanced functional materials, 2021-11, Vol.31 (47), p.n/a, Article 2104301</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>39</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000686926100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3441-d6f9ce40e6d647f774916eb6ee55d7cbdbd20b54cb12fdb2590e62bcf72b6abc3</citedby><cites>FETCH-LOGICAL-c3441-d6f9ce40e6d647f774916eb6ee55d7cbdbd20b54cb12fdb2590e62bcf72b6abc3</cites><orcidid>0000-0002-4292-5103 ; 0000-0003-4025-8017 ; 0000-0003-2906-0747 ; 0000-0003-4641-3508 ; 0000-0002-7448-9123 ; 0000-0002-3443-0987 ; 0000-0002-6340-7217 ; 0000-0002-5610-025X ; 0000-0002-6635-670X ; 0000-0001-5223-9580 ; 0000000242925103 ; 000000026635670X ; 0000000340258017 ; 0000000263407217 ; 000000025610025X ; 0000000234430987 ; 0000000274489123 ; 0000000346413508 ; 0000000329060747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202104301$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202104301$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,39263,45579,45580</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1814527$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Quill, Tyler J.</creatorcontrib><creatorcontrib>LeCroy, Garrett</creatorcontrib><creatorcontrib>Melianas, Armantas</creatorcontrib><creatorcontrib>Rawlings, Dakota</creatorcontrib><creatorcontrib>Thiburce, Quentin</creatorcontrib><creatorcontrib>Sheelamanthula, Rajendar</creatorcontrib><creatorcontrib>Cheng, Christina</creatorcontrib><creatorcontrib>Tuchman, Yaakov</creatorcontrib><creatorcontrib>Keene, Scott T.</creatorcontrib><creatorcontrib>McCulloch, Iain</creatorcontrib><creatorcontrib>Segalman, Rachel A.</creatorcontrib><creatorcontrib>Chabinyc, Michael L.</creatorcontrib><creatorcontrib>Salleo, Alberto</creatorcontrib><title>Ion Pair Uptake in Ion Gel Devices Based on Organic Mixed Ionic–Electronic Conductors</title><title>Advanced functional materials</title><addtitle>ADV FUNCT MATER</addtitle><description>In organic mixed ionic–electronic conductors (OMIECs), it is critical to understand the motion of ions in the electrolyte and OMIEC. Generally, the focus is on the movement of net charge during gating, and the motion of neutral anion–cation pairs is seldom considered. Uptake of mobile ion pairs by the semiconductor before electrochemical gating (passive uptake) can be advantageous as this can improve device speed, and both ions can participate in charge compensation during gating. Here, such passive ion pair uptake in high‐speed solid‐state devices is demonstrated using an ion gel electrolyte. This is compared to a polymerized ionic liquid (PIL) electrolyte to understand how ion pair uptake affects device characteristics. Using X‐ray photoelectron spectroscopy, the passive uptake of ion pairs from the ion gel into the OMIEC is detected, whereas no uptake is observed with a PIL electrolyte. This is corroborated by X‐ray scattering, which reveals morphological changes to the OMIEC from the uptake of ion pairs. With in situ Raman, a reorganization of both anions and cations is then observed during gating. Finally, the speed and retention of OMIEC‐based neuromorphic devices are tuned by controlling the freedom of charge motion in the electrolyte.
The passive uptake of anion–cation pairs from a solid‐state ion gel electrolyte into an organic mixed ionic–electronic conductor (OMIEC) is reported. The structural effects of the passive ion uptake are investigated as well as the consequences on doping of the OMIEC. Finally, neuromorphic devices are fabricated to compare device speed and state retention with and without passive ion uptake.</description><subject>Anions</subject><subject>artificial synapses</subject><subject>Cations</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>Conductors</subject><subject>Electrolytes</subject><subject>Ion pairs</subject><subject>ionic liquid intercalation</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>mixed conductors</subject><subject>Movement</subject><subject>Nanoscience & Nanotechnology</subject><subject>organic semiconductors</subject><subject>Photoelectrons</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Technology</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkM1OGzEURkcVlRqg264tWFYJtsfjmVnSSQKREsGiCHaWf-4UQ7BT26Flxzv0DfskOASly7Ky_emc60-3KL4QPCIY0xNp-ocRxZRgVmLyoRgQTviwxLTZ293JzadiP8Y7jEldl2xQXM-8Q5fSBnS1SvIekHVoE53BEo3h0WqI6JuMYFAOL8IP6axGC_s7Bxmz-u_zn8kSdAqbB-q8M2udfIiHxcdeLiN8fjsPiqvp5Ht3PpxfnM260_lQl4yRoeF9q4Fh4Iazuq9r1hIOigNUlam1MspQrCqmFaG9UbRqM0qV7muquFS6PCiOtnN9TFZEbRPoW-2dy50EaQiraJ2h4y20Cv7nGmISd34dXO4l8sSmbAjnLFOjLaWDjzFAL1bBPsjwJAgWmw2LzYbFbsNZ-LoVfoHyff4bnIadhDHmDW8pzyp-pZv3051NMlnvOr92Kavtm2qX8PSfWuJ0PF38K_kCDOagUQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Quill, Tyler J.</creator><creator>LeCroy, Garrett</creator><creator>Melianas, Armantas</creator><creator>Rawlings, Dakota</creator><creator>Thiburce, Quentin</creator><creator>Sheelamanthula, Rajendar</creator><creator>Cheng, Christina</creator><creator>Tuchman, Yaakov</creator><creator>Keene, Scott T.</creator><creator>McCulloch, Iain</creator><creator>Segalman, Rachel A.</creator><creator>Chabinyc, Michael L.</creator><creator>Salleo, Alberto</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4292-5103</orcidid><orcidid>https://orcid.org/0000-0003-4025-8017</orcidid><orcidid>https://orcid.org/0000-0003-2906-0747</orcidid><orcidid>https://orcid.org/0000-0003-4641-3508</orcidid><orcidid>https://orcid.org/0000-0002-7448-9123</orcidid><orcidid>https://orcid.org/0000-0002-3443-0987</orcidid><orcidid>https://orcid.org/0000-0002-6340-7217</orcidid><orcidid>https://orcid.org/0000-0002-5610-025X</orcidid><orcidid>https://orcid.org/0000-0002-6635-670X</orcidid><orcidid>https://orcid.org/0000-0001-5223-9580</orcidid><orcidid>https://orcid.org/0000000242925103</orcidid><orcidid>https://orcid.org/000000026635670X</orcidid><orcidid>https://orcid.org/0000000340258017</orcidid><orcidid>https://orcid.org/0000000263407217</orcidid><orcidid>https://orcid.org/000000025610025X</orcidid><orcidid>https://orcid.org/0000000234430987</orcidid><orcidid>https://orcid.org/0000000274489123</orcidid><orcidid>https://orcid.org/0000000346413508</orcidid><orcidid>https://orcid.org/0000000329060747</orcidid></search><sort><creationdate>20211101</creationdate><title>Ion Pair Uptake in Ion Gel Devices Based on Organic Mixed Ionic–Electronic Conductors</title><author>Quill, Tyler J. ; LeCroy, Garrett ; Melianas, Armantas ; Rawlings, Dakota ; Thiburce, Quentin ; Sheelamanthula, Rajendar ; Cheng, Christina ; Tuchman, Yaakov ; Keene, Scott T. ; McCulloch, Iain ; Segalman, Rachel A. ; Chabinyc, Michael L. ; Salleo, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3441-d6f9ce40e6d647f774916eb6ee55d7cbdbd20b54cb12fdb2590e62bcf72b6abc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anions</topic><topic>artificial synapses</topic><topic>Cations</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>Conductors</topic><topic>Electrolytes</topic><topic>Ion pairs</topic><topic>ionic liquid intercalation</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>mixed conductors</topic><topic>Movement</topic><topic>Nanoscience & Nanotechnology</topic><topic>organic semiconductors</topic><topic>Photoelectrons</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quill, Tyler J.</creatorcontrib><creatorcontrib>LeCroy, Garrett</creatorcontrib><creatorcontrib>Melianas, Armantas</creatorcontrib><creatorcontrib>Rawlings, Dakota</creatorcontrib><creatorcontrib>Thiburce, Quentin</creatorcontrib><creatorcontrib>Sheelamanthula, Rajendar</creatorcontrib><creatorcontrib>Cheng, Christina</creatorcontrib><creatorcontrib>Tuchman, Yaakov</creatorcontrib><creatorcontrib>Keene, Scott T.</creatorcontrib><creatorcontrib>McCulloch, Iain</creatorcontrib><creatorcontrib>Segalman, Rachel A.</creatorcontrib><creatorcontrib>Chabinyc, Michael L.</creatorcontrib><creatorcontrib>Salleo, Alberto</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quill, Tyler J.</au><au>LeCroy, Garrett</au><au>Melianas, Armantas</au><au>Rawlings, Dakota</au><au>Thiburce, Quentin</au><au>Sheelamanthula, Rajendar</au><au>Cheng, Christina</au><au>Tuchman, Yaakov</au><au>Keene, Scott T.</au><au>McCulloch, Iain</au><au>Segalman, Rachel A.</au><au>Chabinyc, Michael L.</au><au>Salleo, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ion Pair Uptake in Ion Gel Devices Based on Organic Mixed Ionic–Electronic Conductors</atitle><jtitle>Advanced functional materials</jtitle><stitle>ADV FUNCT MATER</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>31</volume><issue>47</issue><epage>n/a</epage><artnum>2104301</artnum><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>In organic mixed ionic–electronic conductors (OMIECs), it is critical to understand the motion of ions in the electrolyte and OMIEC. Generally, the focus is on the movement of net charge during gating, and the motion of neutral anion–cation pairs is seldom considered. Uptake of mobile ion pairs by the semiconductor before electrochemical gating (passive uptake) can be advantageous as this can improve device speed, and both ions can participate in charge compensation during gating. Here, such passive ion pair uptake in high‐speed solid‐state devices is demonstrated using an ion gel electrolyte. This is compared to a polymerized ionic liquid (PIL) electrolyte to understand how ion pair uptake affects device characteristics. Using X‐ray photoelectron spectroscopy, the passive uptake of ion pairs from the ion gel into the OMIEC is detected, whereas no uptake is observed with a PIL electrolyte. This is corroborated by X‐ray scattering, which reveals morphological changes to the OMIEC from the uptake of ion pairs. With in situ Raman, a reorganization of both anions and cations is then observed during gating. Finally, the speed and retention of OMIEC‐based neuromorphic devices are tuned by controlling the freedom of charge motion in the electrolyte.
The passive uptake of anion–cation pairs from a solid‐state ion gel electrolyte into an organic mixed ionic–electronic conductor (OMIEC) is reported. The structural effects of the passive ion uptake are investigated as well as the consequences on doping of the OMIEC. Finally, neuromorphic devices are fabricated to compare device speed and state retention with and without passive ion uptake.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><doi>10.1002/adfm.202104301</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4292-5103</orcidid><orcidid>https://orcid.org/0000-0003-4025-8017</orcidid><orcidid>https://orcid.org/0000-0003-2906-0747</orcidid><orcidid>https://orcid.org/0000-0003-4641-3508</orcidid><orcidid>https://orcid.org/0000-0002-7448-9123</orcidid><orcidid>https://orcid.org/0000-0002-3443-0987</orcidid><orcidid>https://orcid.org/0000-0002-6340-7217</orcidid><orcidid>https://orcid.org/0000-0002-5610-025X</orcidid><orcidid>https://orcid.org/0000-0002-6635-670X</orcidid><orcidid>https://orcid.org/0000-0001-5223-9580</orcidid><orcidid>https://orcid.org/0000000242925103</orcidid><orcidid>https://orcid.org/000000026635670X</orcidid><orcidid>https://orcid.org/0000000340258017</orcidid><orcidid>https://orcid.org/0000000263407217</orcidid><orcidid>https://orcid.org/000000025610025X</orcidid><orcidid>https://orcid.org/0000000234430987</orcidid><orcidid>https://orcid.org/0000000274489123</orcidid><orcidid>https://orcid.org/0000000346413508</orcidid><orcidid>https://orcid.org/0000000329060747</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-11, Vol.31 (47), p.n/a, Article 2104301 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_crossref_primary_10_1002_adfm_202104301 |
source | Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Anions artificial synapses Cations Chemistry Chemistry, Multidisciplinary Chemistry, Physical Conductors Electrolytes Ion pairs ionic liquid intercalation Ionic liquids Ions Materials Science Materials Science, Multidisciplinary mixed conductors Movement Nanoscience & Nanotechnology organic semiconductors Photoelectrons Physical Sciences Physics Physics, Applied Physics, Condensed Matter Science & Technology Science & Technology - Other Topics Technology |
title | Ion Pair Uptake in Ion Gel Devices Based on Organic Mixed Ionic–Electronic Conductors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T14%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ion%20Pair%20Uptake%20in%20Ion%20Gel%20Devices%20Based%20on%20Organic%20Mixed%20Ionic%E2%80%93Electronic%20Conductors&rft.jtitle=Advanced%20functional%20materials&rft.au=Quill,%20Tyler%20J.&rft.date=2021-11-01&rft.volume=31&rft.issue=47&rft.epage=n/a&rft.artnum=2104301&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202104301&rft_dat=%3Cproquest_cross%3E2598381664%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598381664&rft_id=info:pmid/&rfr_iscdi=true |