Ion Pair Uptake in Ion Gel Devices Based on Organic Mixed Ionic–Electronic Conductors

In organic mixed ionic–electronic conductors (OMIECs), it is critical to understand the motion of ions in the electrolyte and OMIEC. Generally, the focus is on the movement of net charge during gating, and the motion of neutral anion–cation pairs is seldom considered. Uptake of mobile ion pairs by t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-11, Vol.31 (47), p.n/a, Article 2104301
Hauptverfasser: Quill, Tyler J., LeCroy, Garrett, Melianas, Armantas, Rawlings, Dakota, Thiburce, Quentin, Sheelamanthula, Rajendar, Cheng, Christina, Tuchman, Yaakov, Keene, Scott T., McCulloch, Iain, Segalman, Rachel A., Chabinyc, Michael L., Salleo, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 47
container_start_page
container_title Advanced functional materials
container_volume 31
creator Quill, Tyler J.
LeCroy, Garrett
Melianas, Armantas
Rawlings, Dakota
Thiburce, Quentin
Sheelamanthula, Rajendar
Cheng, Christina
Tuchman, Yaakov
Keene, Scott T.
McCulloch, Iain
Segalman, Rachel A.
Chabinyc, Michael L.
Salleo, Alberto
description In organic mixed ionic–electronic conductors (OMIECs), it is critical to understand the motion of ions in the electrolyte and OMIEC. Generally, the focus is on the movement of net charge during gating, and the motion of neutral anion–cation pairs is seldom considered. Uptake of mobile ion pairs by the semiconductor before electrochemical gating (passive uptake) can be advantageous as this can improve device speed, and both ions can participate in charge compensation during gating. Here, such passive ion pair uptake in high‐speed solid‐state devices is demonstrated using an ion gel electrolyte. This is compared to a polymerized ionic liquid (PIL) electrolyte to understand how ion pair uptake affects device characteristics. Using X‐ray photoelectron spectroscopy, the passive uptake of ion pairs from the ion gel into the OMIEC is detected, whereas no uptake is observed with a PIL electrolyte. This is corroborated by X‐ray scattering, which reveals morphological changes to the OMIEC from the uptake of ion pairs. With in situ Raman, a reorganization of both anions and cations is then observed during gating. Finally, the speed and retention of OMIEC‐based neuromorphic devices are tuned by controlling the freedom of charge motion in the electrolyte. The passive uptake of anion–cation pairs from a solid‐state ion gel electrolyte into an organic mixed ionic–electronic conductor (OMIEC) is reported. The structural effects of the passive ion uptake are investigated as well as the consequences on doping of the OMIEC. Finally, neuromorphic devices are fabricated to compare device speed and state retention with and without passive ion uptake.
doi_str_mv 10.1002/adfm.202104301
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202104301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598381664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3441-d6f9ce40e6d647f774916eb6ee55d7cbdbd20b54cb12fdb2590e62bcf72b6abc3</originalsourceid><addsrcrecordid>eNqNkM1OGzEURkcVlRqg264tWFYJtsfjmVnSSQKREsGiCHaWf-4UQ7BT26Flxzv0DfskOASly7Ky_emc60-3KL4QPCIY0xNp-ocRxZRgVmLyoRgQTviwxLTZ293JzadiP8Y7jEldl2xQXM-8Q5fSBnS1SvIekHVoE53BEo3h0WqI6JuMYFAOL8IP6axGC_s7Bxmz-u_zn8kSdAqbB-q8M2udfIiHxcdeLiN8fjsPiqvp5Ht3PpxfnM260_lQl4yRoeF9q4Fh4Iazuq9r1hIOigNUlam1MspQrCqmFaG9UbRqM0qV7muquFS6PCiOtnN9TFZEbRPoW-2dy50EaQiraJ2h4y20Cv7nGmISd34dXO4l8sSmbAjnLFOjLaWDjzFAL1bBPsjwJAgWmw2LzYbFbsNZ-LoVfoHyff4bnIadhDHmDW8pzyp-pZv3051NMlnvOr92Kavtm2qX8PSfWuJ0PF38K_kCDOagUQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598381664</pqid></control><display><type>article</type><title>Ion Pair Uptake in Ion Gel Devices Based on Organic Mixed Ionic–Electronic Conductors</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Quill, Tyler J. ; LeCroy, Garrett ; Melianas, Armantas ; Rawlings, Dakota ; Thiburce, Quentin ; Sheelamanthula, Rajendar ; Cheng, Christina ; Tuchman, Yaakov ; Keene, Scott T. ; McCulloch, Iain ; Segalman, Rachel A. ; Chabinyc, Michael L. ; Salleo, Alberto</creator><creatorcontrib>Quill, Tyler J. ; LeCroy, Garrett ; Melianas, Armantas ; Rawlings, Dakota ; Thiburce, Quentin ; Sheelamanthula, Rajendar ; Cheng, Christina ; Tuchman, Yaakov ; Keene, Scott T. ; McCulloch, Iain ; Segalman, Rachel A. ; Chabinyc, Michael L. ; Salleo, Alberto</creatorcontrib><description>In organic mixed ionic–electronic conductors (OMIECs), it is critical to understand the motion of ions in the electrolyte and OMIEC. Generally, the focus is on the movement of net charge during gating, and the motion of neutral anion–cation pairs is seldom considered. Uptake of mobile ion pairs by the semiconductor before electrochemical gating (passive uptake) can be advantageous as this can improve device speed, and both ions can participate in charge compensation during gating. Here, such passive ion pair uptake in high‐speed solid‐state devices is demonstrated using an ion gel electrolyte. This is compared to a polymerized ionic liquid (PIL) electrolyte to understand how ion pair uptake affects device characteristics. Using X‐ray photoelectron spectroscopy, the passive uptake of ion pairs from the ion gel into the OMIEC is detected, whereas no uptake is observed with a PIL electrolyte. This is corroborated by X‐ray scattering, which reveals morphological changes to the OMIEC from the uptake of ion pairs. With in situ Raman, a reorganization of both anions and cations is then observed during gating. Finally, the speed and retention of OMIEC‐based neuromorphic devices are tuned by controlling the freedom of charge motion in the electrolyte. The passive uptake of anion–cation pairs from a solid‐state ion gel electrolyte into an organic mixed ionic–electronic conductor (OMIEC) is reported. The structural effects of the passive ion uptake are investigated as well as the consequences on doping of the OMIEC. Finally, neuromorphic devices are fabricated to compare device speed and state retention with and without passive ion uptake.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202104301</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Anions ; artificial synapses ; Cations ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; Conductors ; Electrolytes ; Ion pairs ; ionic liquid intercalation ; Ionic liquids ; Ions ; Materials Science ; Materials Science, Multidisciplinary ; mixed conductors ; Movement ; Nanoscience &amp; Nanotechnology ; organic semiconductors ; Photoelectrons ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Technology</subject><ispartof>Advanced functional materials, 2021-11, Vol.31 (47), p.n/a, Article 2104301</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>39</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000686926100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3441-d6f9ce40e6d647f774916eb6ee55d7cbdbd20b54cb12fdb2590e62bcf72b6abc3</citedby><cites>FETCH-LOGICAL-c3441-d6f9ce40e6d647f774916eb6ee55d7cbdbd20b54cb12fdb2590e62bcf72b6abc3</cites><orcidid>0000-0002-4292-5103 ; 0000-0003-4025-8017 ; 0000-0003-2906-0747 ; 0000-0003-4641-3508 ; 0000-0002-7448-9123 ; 0000-0002-3443-0987 ; 0000-0002-6340-7217 ; 0000-0002-5610-025X ; 0000-0002-6635-670X ; 0000-0001-5223-9580 ; 0000000242925103 ; 000000026635670X ; 0000000340258017 ; 0000000263407217 ; 000000025610025X ; 0000000234430987 ; 0000000274489123 ; 0000000346413508 ; 0000000329060747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202104301$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202104301$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,39263,45579,45580</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1814527$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Quill, Tyler J.</creatorcontrib><creatorcontrib>LeCroy, Garrett</creatorcontrib><creatorcontrib>Melianas, Armantas</creatorcontrib><creatorcontrib>Rawlings, Dakota</creatorcontrib><creatorcontrib>Thiburce, Quentin</creatorcontrib><creatorcontrib>Sheelamanthula, Rajendar</creatorcontrib><creatorcontrib>Cheng, Christina</creatorcontrib><creatorcontrib>Tuchman, Yaakov</creatorcontrib><creatorcontrib>Keene, Scott T.</creatorcontrib><creatorcontrib>McCulloch, Iain</creatorcontrib><creatorcontrib>Segalman, Rachel A.</creatorcontrib><creatorcontrib>Chabinyc, Michael L.</creatorcontrib><creatorcontrib>Salleo, Alberto</creatorcontrib><title>Ion Pair Uptake in Ion Gel Devices Based on Organic Mixed Ionic–Electronic Conductors</title><title>Advanced functional materials</title><addtitle>ADV FUNCT MATER</addtitle><description>In organic mixed ionic–electronic conductors (OMIECs), it is critical to understand the motion of ions in the electrolyte and OMIEC. Generally, the focus is on the movement of net charge during gating, and the motion of neutral anion–cation pairs is seldom considered. Uptake of mobile ion pairs by the semiconductor before electrochemical gating (passive uptake) can be advantageous as this can improve device speed, and both ions can participate in charge compensation during gating. Here, such passive ion pair uptake in high‐speed solid‐state devices is demonstrated using an ion gel electrolyte. This is compared to a polymerized ionic liquid (PIL) electrolyte to understand how ion pair uptake affects device characteristics. Using X‐ray photoelectron spectroscopy, the passive uptake of ion pairs from the ion gel into the OMIEC is detected, whereas no uptake is observed with a PIL electrolyte. This is corroborated by X‐ray scattering, which reveals morphological changes to the OMIEC from the uptake of ion pairs. With in situ Raman, a reorganization of both anions and cations is then observed during gating. Finally, the speed and retention of OMIEC‐based neuromorphic devices are tuned by controlling the freedom of charge motion in the electrolyte. The passive uptake of anion–cation pairs from a solid‐state ion gel electrolyte into an organic mixed ionic–electronic conductor (OMIEC) is reported. The structural effects of the passive ion uptake are investigated as well as the consequences on doping of the OMIEC. Finally, neuromorphic devices are fabricated to compare device speed and state retention with and without passive ion uptake.</description><subject>Anions</subject><subject>artificial synapses</subject><subject>Cations</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>Conductors</subject><subject>Electrolytes</subject><subject>Ion pairs</subject><subject>ionic liquid intercalation</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>mixed conductors</subject><subject>Movement</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>organic semiconductors</subject><subject>Photoelectrons</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Technology</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkM1OGzEURkcVlRqg264tWFYJtsfjmVnSSQKREsGiCHaWf-4UQ7BT26Flxzv0DfskOASly7Ky_emc60-3KL4QPCIY0xNp-ocRxZRgVmLyoRgQTviwxLTZ293JzadiP8Y7jEldl2xQXM-8Q5fSBnS1SvIekHVoE53BEo3h0WqI6JuMYFAOL8IP6axGC_s7Bxmz-u_zn8kSdAqbB-q8M2udfIiHxcdeLiN8fjsPiqvp5Ht3PpxfnM260_lQl4yRoeF9q4Fh4Iazuq9r1hIOigNUlam1MspQrCqmFaG9UbRqM0qV7muquFS6PCiOtnN9TFZEbRPoW-2dy50EaQiraJ2h4y20Cv7nGmISd34dXO4l8sSmbAjnLFOjLaWDjzFAL1bBPsjwJAgWmw2LzYbFbsNZ-LoVfoHyff4bnIadhDHmDW8pzyp-pZv3051NMlnvOr92Kavtm2qX8PSfWuJ0PF38K_kCDOagUQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Quill, Tyler J.</creator><creator>LeCroy, Garrett</creator><creator>Melianas, Armantas</creator><creator>Rawlings, Dakota</creator><creator>Thiburce, Quentin</creator><creator>Sheelamanthula, Rajendar</creator><creator>Cheng, Christina</creator><creator>Tuchman, Yaakov</creator><creator>Keene, Scott T.</creator><creator>McCulloch, Iain</creator><creator>Segalman, Rachel A.</creator><creator>Chabinyc, Michael L.</creator><creator>Salleo, Alberto</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4292-5103</orcidid><orcidid>https://orcid.org/0000-0003-4025-8017</orcidid><orcidid>https://orcid.org/0000-0003-2906-0747</orcidid><orcidid>https://orcid.org/0000-0003-4641-3508</orcidid><orcidid>https://orcid.org/0000-0002-7448-9123</orcidid><orcidid>https://orcid.org/0000-0002-3443-0987</orcidid><orcidid>https://orcid.org/0000-0002-6340-7217</orcidid><orcidid>https://orcid.org/0000-0002-5610-025X</orcidid><orcidid>https://orcid.org/0000-0002-6635-670X</orcidid><orcidid>https://orcid.org/0000-0001-5223-9580</orcidid><orcidid>https://orcid.org/0000000242925103</orcidid><orcidid>https://orcid.org/000000026635670X</orcidid><orcidid>https://orcid.org/0000000340258017</orcidid><orcidid>https://orcid.org/0000000263407217</orcidid><orcidid>https://orcid.org/000000025610025X</orcidid><orcidid>https://orcid.org/0000000234430987</orcidid><orcidid>https://orcid.org/0000000274489123</orcidid><orcidid>https://orcid.org/0000000346413508</orcidid><orcidid>https://orcid.org/0000000329060747</orcidid></search><sort><creationdate>20211101</creationdate><title>Ion Pair Uptake in Ion Gel Devices Based on Organic Mixed Ionic–Electronic Conductors</title><author>Quill, Tyler J. ; LeCroy, Garrett ; Melianas, Armantas ; Rawlings, Dakota ; Thiburce, Quentin ; Sheelamanthula, Rajendar ; Cheng, Christina ; Tuchman, Yaakov ; Keene, Scott T. ; McCulloch, Iain ; Segalman, Rachel A. ; Chabinyc, Michael L. ; Salleo, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3441-d6f9ce40e6d647f774916eb6ee55d7cbdbd20b54cb12fdb2590e62bcf72b6abc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anions</topic><topic>artificial synapses</topic><topic>Cations</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>Conductors</topic><topic>Electrolytes</topic><topic>Ion pairs</topic><topic>ionic liquid intercalation</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>mixed conductors</topic><topic>Movement</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>organic semiconductors</topic><topic>Photoelectrons</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quill, Tyler J.</creatorcontrib><creatorcontrib>LeCroy, Garrett</creatorcontrib><creatorcontrib>Melianas, Armantas</creatorcontrib><creatorcontrib>Rawlings, Dakota</creatorcontrib><creatorcontrib>Thiburce, Quentin</creatorcontrib><creatorcontrib>Sheelamanthula, Rajendar</creatorcontrib><creatorcontrib>Cheng, Christina</creatorcontrib><creatorcontrib>Tuchman, Yaakov</creatorcontrib><creatorcontrib>Keene, Scott T.</creatorcontrib><creatorcontrib>McCulloch, Iain</creatorcontrib><creatorcontrib>Segalman, Rachel A.</creatorcontrib><creatorcontrib>Chabinyc, Michael L.</creatorcontrib><creatorcontrib>Salleo, Alberto</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quill, Tyler J.</au><au>LeCroy, Garrett</au><au>Melianas, Armantas</au><au>Rawlings, Dakota</au><au>Thiburce, Quentin</au><au>Sheelamanthula, Rajendar</au><au>Cheng, Christina</au><au>Tuchman, Yaakov</au><au>Keene, Scott T.</au><au>McCulloch, Iain</au><au>Segalman, Rachel A.</au><au>Chabinyc, Michael L.</au><au>Salleo, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ion Pair Uptake in Ion Gel Devices Based on Organic Mixed Ionic–Electronic Conductors</atitle><jtitle>Advanced functional materials</jtitle><stitle>ADV FUNCT MATER</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>31</volume><issue>47</issue><epage>n/a</epage><artnum>2104301</artnum><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>In organic mixed ionic–electronic conductors (OMIECs), it is critical to understand the motion of ions in the electrolyte and OMIEC. Generally, the focus is on the movement of net charge during gating, and the motion of neutral anion–cation pairs is seldom considered. Uptake of mobile ion pairs by the semiconductor before electrochemical gating (passive uptake) can be advantageous as this can improve device speed, and both ions can participate in charge compensation during gating. Here, such passive ion pair uptake in high‐speed solid‐state devices is demonstrated using an ion gel electrolyte. This is compared to a polymerized ionic liquid (PIL) electrolyte to understand how ion pair uptake affects device characteristics. Using X‐ray photoelectron spectroscopy, the passive uptake of ion pairs from the ion gel into the OMIEC is detected, whereas no uptake is observed with a PIL electrolyte. This is corroborated by X‐ray scattering, which reveals morphological changes to the OMIEC from the uptake of ion pairs. With in situ Raman, a reorganization of both anions and cations is then observed during gating. Finally, the speed and retention of OMIEC‐based neuromorphic devices are tuned by controlling the freedom of charge motion in the electrolyte. The passive uptake of anion–cation pairs from a solid‐state ion gel electrolyte into an organic mixed ionic–electronic conductor (OMIEC) is reported. The structural effects of the passive ion uptake are investigated as well as the consequences on doping of the OMIEC. Finally, neuromorphic devices are fabricated to compare device speed and state retention with and without passive ion uptake.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><doi>10.1002/adfm.202104301</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4292-5103</orcidid><orcidid>https://orcid.org/0000-0003-4025-8017</orcidid><orcidid>https://orcid.org/0000-0003-2906-0747</orcidid><orcidid>https://orcid.org/0000-0003-4641-3508</orcidid><orcidid>https://orcid.org/0000-0002-7448-9123</orcidid><orcidid>https://orcid.org/0000-0002-3443-0987</orcidid><orcidid>https://orcid.org/0000-0002-6340-7217</orcidid><orcidid>https://orcid.org/0000-0002-5610-025X</orcidid><orcidid>https://orcid.org/0000-0002-6635-670X</orcidid><orcidid>https://orcid.org/0000-0001-5223-9580</orcidid><orcidid>https://orcid.org/0000000242925103</orcidid><orcidid>https://orcid.org/000000026635670X</orcidid><orcidid>https://orcid.org/0000000340258017</orcidid><orcidid>https://orcid.org/0000000263407217</orcidid><orcidid>https://orcid.org/000000025610025X</orcidid><orcidid>https://orcid.org/0000000234430987</orcidid><orcidid>https://orcid.org/0000000274489123</orcidid><orcidid>https://orcid.org/0000000346413508</orcidid><orcidid>https://orcid.org/0000000329060747</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-11, Vol.31 (47), p.n/a, Article 2104301
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_202104301
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Anions
artificial synapses
Cations
Chemistry
Chemistry, Multidisciplinary
Chemistry, Physical
Conductors
Electrolytes
Ion pairs
ionic liquid intercalation
Ionic liquids
Ions
Materials Science
Materials Science, Multidisciplinary
mixed conductors
Movement
Nanoscience & Nanotechnology
organic semiconductors
Photoelectrons
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Science & Technology
Science & Technology - Other Topics
Technology
title Ion Pair Uptake in Ion Gel Devices Based on Organic Mixed Ionic–Electronic Conductors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T14%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ion%20Pair%20Uptake%20in%20Ion%20Gel%20Devices%20Based%20on%20Organic%20Mixed%20Ionic%E2%80%93Electronic%20Conductors&rft.jtitle=Advanced%20functional%20materials&rft.au=Quill,%20Tyler%20J.&rft.date=2021-11-01&rft.volume=31&rft.issue=47&rft.epage=n/a&rft.artnum=2104301&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202104301&rft_dat=%3Cproquest_cross%3E2598381664%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598381664&rft_id=info:pmid/&rfr_iscdi=true