Polydopamine Sensors of Bacterial Hypoxia via Fluorescence Coupling

Biological catecholamines play critical physiological roles in various parts of the human body, namely, the skin and brain. In the skin, an oxygen‐contacting and oxygen‐abundant body part, catecholamine molecules are oxidatively polymerized, becoming melanin. In contrast, the brain is an oxygen‐dema...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-02, Vol.31 (9), p.n/a
Hauptverfasser: Lee, Joo Hoon, Ryu, Jea Sung, Kang, Yoo Kyung, Lee, Haeshin, Chung, Hyun Jung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Advanced functional materials
container_volume 31
creator Lee, Joo Hoon
Ryu, Jea Sung
Kang, Yoo Kyung
Lee, Haeshin
Chung, Hyun Jung
description Biological catecholamines play critical physiological roles in various parts of the human body, namely, the skin and brain. In the skin, an oxygen‐contacting and oxygen‐abundant body part, catecholamine molecules are oxidatively polymerized, becoming melanin. In contrast, the brain is an oxygen‐demanding organ that suppresses catecholamine oxidation. Catecholamine oxidative polymerization, also known as polydopamine (or dopamine–melanin) formation, can be finely controlled by bacterial growth. Under exponential growth of Escherichia coli, a process that requires large amounts of oxygen, dopamine polymerization is significantly inhibited. In contrast, under steady‐state growth, polydopamine is formed due to the abundance of oxygen which is not actively consumed by E. coli. This polydopamine‐oxygen relationship is further demonstrated by using fluorescent dextran nanoparticles (FDNPs) as sensors, whose fluorescence is quenched by polydopamine formation. Thus, FDNP fluorescence can be precisely controlled by dopamine concentration, incubation time, and bacterial number. The cascade coupling of E. coli growth—oxygen level—polydopamine—fluorescence can also be used to detect the antibiotic‐resistant bacteria, New Delhi metallo‐beta‐lactamase 1‐positive (NDM1+) E. coli. This method not only uncovers the unique role played by biological catecholamine in a living system, but also presents a diagnostic assay for detecting bacterial growth and antibiotic susceptibility. Biological catecholamines play critical roles in the human body, and vary in oxidative polymerization rates depending on their function in different tissues. This study reports a fluorescence coupling strategy to demonstrate the polydopamine–oxygen relationship during bacterial growth‐induced hypoxia. The rate and extent of polydopamine formation can be finely controlled according to the bacterial growth condition, as well as antibacterial effects.
doi_str_mv 10.1002/adfm.202007993
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_202007993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492567095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3543-c42739f0c58ba19cf9a6a6318bd1f94c4206e206aa7cdf471504cbb2cba68a43</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxRdRsFavngOeU_cru9ljjdYKFQV78LZMNruSkmbjbqPmvzelokcPjxmY95sHD6FLgmcEY3oNldvOKKYYS6XYEZoQQUTKMM2Pf3fyeorOYtxgTKRkfIKKZ98Mle9gW7c2ebFt9CEm3iU3YHY21NAky6HzXzUkH6MWTe-Djca2xiaF77umbt_O0YmDJtqLnzlF68Xdulimq6f7h2K-Sg3LOEsNp5Iph02Wl0CUcQoECEbysiJO8fGMhR0FIE3luCQZ5qYsqSlB5MDZFF0d3nbBv_c27vTG96EdEzXlimZCYpWNrtnBZYKPMVinu1BvIQyaYL3vSe970r89jYA6AJ91Y4d_3Hp-u3j8Y78B0hpsYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492567095</pqid></control><display><type>article</type><title>Polydopamine Sensors of Bacterial Hypoxia via Fluorescence Coupling</title><source>Wiley Online Library All Journals</source><creator>Lee, Joo Hoon ; Ryu, Jea Sung ; Kang, Yoo Kyung ; Lee, Haeshin ; Chung, Hyun Jung</creator><creatorcontrib>Lee, Joo Hoon ; Ryu, Jea Sung ; Kang, Yoo Kyung ; Lee, Haeshin ; Chung, Hyun Jung</creatorcontrib><description>Biological catecholamines play critical physiological roles in various parts of the human body, namely, the skin and brain. In the skin, an oxygen‐contacting and oxygen‐abundant body part, catecholamine molecules are oxidatively polymerized, becoming melanin. In contrast, the brain is an oxygen‐demanding organ that suppresses catecholamine oxidation. Catecholamine oxidative polymerization, also known as polydopamine (or dopamine–melanin) formation, can be finely controlled by bacterial growth. Under exponential growth of Escherichia coli, a process that requires large amounts of oxygen, dopamine polymerization is significantly inhibited. In contrast, under steady‐state growth, polydopamine is formed due to the abundance of oxygen which is not actively consumed by E. coli. This polydopamine‐oxygen relationship is further demonstrated by using fluorescent dextran nanoparticles (FDNPs) as sensors, whose fluorescence is quenched by polydopamine formation. Thus, FDNP fluorescence can be precisely controlled by dopamine concentration, incubation time, and bacterial number. The cascade coupling of E. coli growth—oxygen level—polydopamine—fluorescence can also be used to detect the antibiotic‐resistant bacteria, New Delhi metallo‐beta‐lactamase 1‐positive (NDM1+) E. coli. This method not only uncovers the unique role played by biological catecholamine in a living system, but also presents a diagnostic assay for detecting bacterial growth and antibiotic susceptibility. Biological catecholamines play critical roles in the human body, and vary in oxidative polymerization rates depending on their function in different tissues. This study reports a fluorescence coupling strategy to demonstrate the polydopamine–oxygen relationship during bacterial growth‐induced hypoxia. The rate and extent of polydopamine formation can be finely controlled according to the bacterial growth condition, as well as antibacterial effects.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202007993</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Antibiotics ; Bacteria ; bacterial growth ; Body parts ; Brain ; Catecholamine ; Catecholamines ; Coupling ; Coupling (molecular) ; Dextrans ; Dopamine ; E coli ; Fluorescence ; fluorescence sensors ; Hypoxia ; Materials science ; Melanin ; Metallography ; Nanoparticles ; Oxidation ; Oxygen ; polydopamine ; Polymerization ; Sensors</subject><ispartof>Advanced functional materials, 2021-02, Vol.31 (9), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3543-c42739f0c58ba19cf9a6a6318bd1f94c4206e206aa7cdf471504cbb2cba68a43</citedby><cites>FETCH-LOGICAL-c3543-c42739f0c58ba19cf9a6a6318bd1f94c4206e206aa7cdf471504cbb2cba68a43</cites><orcidid>0000-0001-5055-902X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202007993$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202007993$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lee, Joo Hoon</creatorcontrib><creatorcontrib>Ryu, Jea Sung</creatorcontrib><creatorcontrib>Kang, Yoo Kyung</creatorcontrib><creatorcontrib>Lee, Haeshin</creatorcontrib><creatorcontrib>Chung, Hyun Jung</creatorcontrib><title>Polydopamine Sensors of Bacterial Hypoxia via Fluorescence Coupling</title><title>Advanced functional materials</title><description>Biological catecholamines play critical physiological roles in various parts of the human body, namely, the skin and brain. In the skin, an oxygen‐contacting and oxygen‐abundant body part, catecholamine molecules are oxidatively polymerized, becoming melanin. In contrast, the brain is an oxygen‐demanding organ that suppresses catecholamine oxidation. Catecholamine oxidative polymerization, also known as polydopamine (or dopamine–melanin) formation, can be finely controlled by bacterial growth. Under exponential growth of Escherichia coli, a process that requires large amounts of oxygen, dopamine polymerization is significantly inhibited. In contrast, under steady‐state growth, polydopamine is formed due to the abundance of oxygen which is not actively consumed by E. coli. This polydopamine‐oxygen relationship is further demonstrated by using fluorescent dextran nanoparticles (FDNPs) as sensors, whose fluorescence is quenched by polydopamine formation. Thus, FDNP fluorescence can be precisely controlled by dopamine concentration, incubation time, and bacterial number. The cascade coupling of E. coli growth—oxygen level—polydopamine—fluorescence can also be used to detect the antibiotic‐resistant bacteria, New Delhi metallo‐beta‐lactamase 1‐positive (NDM1+) E. coli. This method not only uncovers the unique role played by biological catecholamine in a living system, but also presents a diagnostic assay for detecting bacterial growth and antibiotic susceptibility. Biological catecholamines play critical roles in the human body, and vary in oxidative polymerization rates depending on their function in different tissues. This study reports a fluorescence coupling strategy to demonstrate the polydopamine–oxygen relationship during bacterial growth‐induced hypoxia. The rate and extent of polydopamine formation can be finely controlled according to the bacterial growth condition, as well as antibacterial effects.</description><subject>Antibiotics</subject><subject>Bacteria</subject><subject>bacterial growth</subject><subject>Body parts</subject><subject>Brain</subject><subject>Catecholamine</subject><subject>Catecholamines</subject><subject>Coupling</subject><subject>Coupling (molecular)</subject><subject>Dextrans</subject><subject>Dopamine</subject><subject>E coli</subject><subject>Fluorescence</subject><subject>fluorescence sensors</subject><subject>Hypoxia</subject><subject>Materials science</subject><subject>Melanin</subject><subject>Metallography</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>polydopamine</subject><subject>Polymerization</subject><subject>Sensors</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Lw0AQxRdRsFavngOeU_cru9ljjdYKFQV78LZMNruSkmbjbqPmvzelokcPjxmY95sHD6FLgmcEY3oNldvOKKYYS6XYEZoQQUTKMM2Pf3fyeorOYtxgTKRkfIKKZ98Mle9gW7c2ebFt9CEm3iU3YHY21NAky6HzXzUkH6MWTe-Djca2xiaF77umbt_O0YmDJtqLnzlF68Xdulimq6f7h2K-Sg3LOEsNp5Iph02Wl0CUcQoECEbysiJO8fGMhR0FIE3luCQZ5qYsqSlB5MDZFF0d3nbBv_c27vTG96EdEzXlimZCYpWNrtnBZYKPMVinu1BvIQyaYL3vSe970r89jYA6AJ91Y4d_3Hp-u3j8Y78B0hpsYg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Lee, Joo Hoon</creator><creator>Ryu, Jea Sung</creator><creator>Kang, Yoo Kyung</creator><creator>Lee, Haeshin</creator><creator>Chung, Hyun Jung</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5055-902X</orcidid></search><sort><creationdate>20210201</creationdate><title>Polydopamine Sensors of Bacterial Hypoxia via Fluorescence Coupling</title><author>Lee, Joo Hoon ; Ryu, Jea Sung ; Kang, Yoo Kyung ; Lee, Haeshin ; Chung, Hyun Jung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3543-c42739f0c58ba19cf9a6a6318bd1f94c4206e206aa7cdf471504cbb2cba68a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antibiotics</topic><topic>Bacteria</topic><topic>bacterial growth</topic><topic>Body parts</topic><topic>Brain</topic><topic>Catecholamine</topic><topic>Catecholamines</topic><topic>Coupling</topic><topic>Coupling (molecular)</topic><topic>Dextrans</topic><topic>Dopamine</topic><topic>E coli</topic><topic>Fluorescence</topic><topic>fluorescence sensors</topic><topic>Hypoxia</topic><topic>Materials science</topic><topic>Melanin</topic><topic>Metallography</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>polydopamine</topic><topic>Polymerization</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Joo Hoon</creatorcontrib><creatorcontrib>Ryu, Jea Sung</creatorcontrib><creatorcontrib>Kang, Yoo Kyung</creatorcontrib><creatorcontrib>Lee, Haeshin</creatorcontrib><creatorcontrib>Chung, Hyun Jung</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Joo Hoon</au><au>Ryu, Jea Sung</au><au>Kang, Yoo Kyung</au><au>Lee, Haeshin</au><au>Chung, Hyun Jung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polydopamine Sensors of Bacterial Hypoxia via Fluorescence Coupling</atitle><jtitle>Advanced functional materials</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>31</volume><issue>9</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Biological catecholamines play critical physiological roles in various parts of the human body, namely, the skin and brain. In the skin, an oxygen‐contacting and oxygen‐abundant body part, catecholamine molecules are oxidatively polymerized, becoming melanin. In contrast, the brain is an oxygen‐demanding organ that suppresses catecholamine oxidation. Catecholamine oxidative polymerization, also known as polydopamine (or dopamine–melanin) formation, can be finely controlled by bacterial growth. Under exponential growth of Escherichia coli, a process that requires large amounts of oxygen, dopamine polymerization is significantly inhibited. In contrast, under steady‐state growth, polydopamine is formed due to the abundance of oxygen which is not actively consumed by E. coli. This polydopamine‐oxygen relationship is further demonstrated by using fluorescent dextran nanoparticles (FDNPs) as sensors, whose fluorescence is quenched by polydopamine formation. Thus, FDNP fluorescence can be precisely controlled by dopamine concentration, incubation time, and bacterial number. The cascade coupling of E. coli growth—oxygen level—polydopamine—fluorescence can also be used to detect the antibiotic‐resistant bacteria, New Delhi metallo‐beta‐lactamase 1‐positive (NDM1+) E. coli. This method not only uncovers the unique role played by biological catecholamine in a living system, but also presents a diagnostic assay for detecting bacterial growth and antibiotic susceptibility. Biological catecholamines play critical roles in the human body, and vary in oxidative polymerization rates depending on their function in different tissues. This study reports a fluorescence coupling strategy to demonstrate the polydopamine–oxygen relationship during bacterial growth‐induced hypoxia. The rate and extent of polydopamine formation can be finely controlled according to the bacterial growth condition, as well as antibacterial effects.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202007993</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5055-902X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-02, Vol.31 (9), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_202007993
source Wiley Online Library All Journals
subjects Antibiotics
Bacteria
bacterial growth
Body parts
Brain
Catecholamine
Catecholamines
Coupling
Coupling (molecular)
Dextrans
Dopamine
E coli
Fluorescence
fluorescence sensors
Hypoxia
Materials science
Melanin
Metallography
Nanoparticles
Oxidation
Oxygen
polydopamine
Polymerization
Sensors
title Polydopamine Sensors of Bacterial Hypoxia via Fluorescence Coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A35%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polydopamine%20Sensors%20of%20Bacterial%20Hypoxia%20via%20Fluorescence%20Coupling&rft.jtitle=Advanced%20functional%20materials&rft.au=Lee,%20Joo%20Hoon&rft.date=2021-02-01&rft.volume=31&rft.issue=9&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202007993&rft_dat=%3Cproquest_cross%3E2492567095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492567095&rft_id=info:pmid/&rfr_iscdi=true