Tungsten as “Adhesive” in Pt 2 CuW 0.25 Ternary Alloy for Highly Durable Oxygen Reduction Electrocatalysis

Pt‐based alloy nanocrystals have shown great success in oxygen reduction electrocatalysis owing to their unique surface and electronic structures. However, they suffer from severe stability issues due to the dissolution of non‐noble metal elements, leading to the “trade‐off” between activity and sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-02, Vol.30 (6)
Hauptverfasser: Tu, Wenzhe, Luo, Wenjia, Chen, Changli, Chen, Kai, Zhu, Enbo, Zhao, Zipeng, Wang, Zelin, Hu, Tao, Zai, Huachao, Ke, Xiaoxing, Sui, Manling, Chen, Pengwan, Zhang, Qingshan, Chen, Qi, Li, Yujing, Huang, Yu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Advanced functional materials
container_volume 30
creator Tu, Wenzhe
Luo, Wenjia
Chen, Changli
Chen, Kai
Zhu, Enbo
Zhao, Zipeng
Wang, Zelin
Hu, Tao
Zai, Huachao
Ke, Xiaoxing
Sui, Manling
Chen, Pengwan
Zhang, Qingshan
Chen, Qi
Li, Yujing
Huang, Yu
description Pt‐based alloy nanocrystals have shown great success in oxygen reduction electrocatalysis owing to their unique surface and electronic structures. However, they suffer from severe stability issues due to the dissolution of non‐noble metal elements, leading to the “trade‐off” between activity and stability. In this work, targeting the stability issue of a Pt x Cu y ‐based alloy, Pt 2 CuW 0.25 ternary alloy nanoparticles are synthesized by thermal reduction strategy based on wet‐chemical method using W(CO) 6 as a reductant. Apart from the competitive activity, the obtained Pt 2 CuW 0.25 /C shows remarkable stability, whereby the area specific activity and mass activity maintain 89.5% and 95.9% of the initial values, respectively, after 30 000 cycles of accelerated polarization between 0.6 and 1.1 V (vs reversible hydrogen electrode). By using vacancy formation energy of surface Pt as the descriptor, it is found that the enhanced stability of Pt 2 CuW 0.25 /C originates mainly from the stronger bonding between W and Pt/Cu atoms, acting as an “adhesive” to stabilize the atoms from dissolution, which is further verified by chemical stability experiments. This work demonstrates a rational design strategy for ternary alloy nano‐electrocatalyst that has high thermodynamic stability while maintaining high activity by employing high‐melting‐point metal.
doi_str_mv 10.1002/adfm.201908230
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_201908230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_201908230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c840-226ff44b04c15c0d0f09e9f4c64693d4716417f646a7df920f7fb0de7173dd813</originalsourceid><addsrcrecordid>eNo9kMtKw0AYhQdRsFa3rv8XSPzn0kyyLLVaoVCRgO7CZC5tJE1kJhGz64Poy_VJbFG6OudsPg4fIbcUY4rI7pRx25ghzTBlHM_IiCY0iTiy9PzU6dsluQrhHZFKycWINHnfrENnG1AB9rvvqdnYUH3a_e4HqgaeO2Aw618BYzaB3PpG-QGmdd0O4FoPi2q9qQe4770qawurr2F9QL1Y0-uuahuY11Z3vtWqU_UQqnBNLpyqg735zzHJH-b5bBEtV49Ps-ky0qnAiLHEOSFKFJpONBp0mNnMCZ2IJONGSJoIKt1hKWlcxtBJV6KxkkpuTEr5mMR_WO3bELx1xYevtofrBcXiKKs4yipOsvgvKDhexw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tungsten as “Adhesive” in Pt 2 CuW 0.25 Ternary Alloy for Highly Durable Oxygen Reduction Electrocatalysis</title><source>Wiley Online Library All Journals</source><creator>Tu, Wenzhe ; Luo, Wenjia ; Chen, Changli ; Chen, Kai ; Zhu, Enbo ; Zhao, Zipeng ; Wang, Zelin ; Hu, Tao ; Zai, Huachao ; Ke, Xiaoxing ; Sui, Manling ; Chen, Pengwan ; Zhang, Qingshan ; Chen, Qi ; Li, Yujing ; Huang, Yu</creator><creatorcontrib>Tu, Wenzhe ; Luo, Wenjia ; Chen, Changli ; Chen, Kai ; Zhu, Enbo ; Zhao, Zipeng ; Wang, Zelin ; Hu, Tao ; Zai, Huachao ; Ke, Xiaoxing ; Sui, Manling ; Chen, Pengwan ; Zhang, Qingshan ; Chen, Qi ; Li, Yujing ; Huang, Yu</creatorcontrib><description>Pt‐based alloy nanocrystals have shown great success in oxygen reduction electrocatalysis owing to their unique surface and electronic structures. However, they suffer from severe stability issues due to the dissolution of non‐noble metal elements, leading to the “trade‐off” between activity and stability. In this work, targeting the stability issue of a Pt x Cu y ‐based alloy, Pt 2 CuW 0.25 ternary alloy nanoparticles are synthesized by thermal reduction strategy based on wet‐chemical method using W(CO) 6 as a reductant. Apart from the competitive activity, the obtained Pt 2 CuW 0.25 /C shows remarkable stability, whereby the area specific activity and mass activity maintain 89.5% and 95.9% of the initial values, respectively, after 30 000 cycles of accelerated polarization between 0.6 and 1.1 V (vs reversible hydrogen electrode). By using vacancy formation energy of surface Pt as the descriptor, it is found that the enhanced stability of Pt 2 CuW 0.25 /C originates mainly from the stronger bonding between W and Pt/Cu atoms, acting as an “adhesive” to stabilize the atoms from dissolution, which is further verified by chemical stability experiments. This work demonstrates a rational design strategy for ternary alloy nano‐electrocatalyst that has high thermodynamic stability while maintaining high activity by employing high‐melting‐point metal.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201908230</identifier><language>eng</language><ispartof>Advanced functional materials, 2020-02, Vol.30 (6)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c840-226ff44b04c15c0d0f09e9f4c64693d4716417f646a7df920f7fb0de7173dd813</citedby><cites>FETCH-LOGICAL-c840-226ff44b04c15c0d0f09e9f4c64693d4716417f646a7df920f7fb0de7173dd813</cites><orcidid>0000-0001-5440-5343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tu, Wenzhe</creatorcontrib><creatorcontrib>Luo, Wenjia</creatorcontrib><creatorcontrib>Chen, Changli</creatorcontrib><creatorcontrib>Chen, Kai</creatorcontrib><creatorcontrib>Zhu, Enbo</creatorcontrib><creatorcontrib>Zhao, Zipeng</creatorcontrib><creatorcontrib>Wang, Zelin</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Zai, Huachao</creatorcontrib><creatorcontrib>Ke, Xiaoxing</creatorcontrib><creatorcontrib>Sui, Manling</creatorcontrib><creatorcontrib>Chen, Pengwan</creatorcontrib><creatorcontrib>Zhang, Qingshan</creatorcontrib><creatorcontrib>Chen, Qi</creatorcontrib><creatorcontrib>Li, Yujing</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><title>Tungsten as “Adhesive” in Pt 2 CuW 0.25 Ternary Alloy for Highly Durable Oxygen Reduction Electrocatalysis</title><title>Advanced functional materials</title><description>Pt‐based alloy nanocrystals have shown great success in oxygen reduction electrocatalysis owing to their unique surface and electronic structures. However, they suffer from severe stability issues due to the dissolution of non‐noble metal elements, leading to the “trade‐off” between activity and stability. In this work, targeting the stability issue of a Pt x Cu y ‐based alloy, Pt 2 CuW 0.25 ternary alloy nanoparticles are synthesized by thermal reduction strategy based on wet‐chemical method using W(CO) 6 as a reductant. Apart from the competitive activity, the obtained Pt 2 CuW 0.25 /C shows remarkable stability, whereby the area specific activity and mass activity maintain 89.5% and 95.9% of the initial values, respectively, after 30 000 cycles of accelerated polarization between 0.6 and 1.1 V (vs reversible hydrogen electrode). By using vacancy formation energy of surface Pt as the descriptor, it is found that the enhanced stability of Pt 2 CuW 0.25 /C originates mainly from the stronger bonding between W and Pt/Cu atoms, acting as an “adhesive” to stabilize the atoms from dissolution, which is further verified by chemical stability experiments. This work demonstrates a rational design strategy for ternary alloy nano‐electrocatalyst that has high thermodynamic stability while maintaining high activity by employing high‐melting‐point metal.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKw0AYhQdRsFa3rv8XSPzn0kyyLLVaoVCRgO7CZC5tJE1kJhGz64Poy_VJbFG6OudsPg4fIbcUY4rI7pRx25ghzTBlHM_IiCY0iTiy9PzU6dsluQrhHZFKycWINHnfrENnG1AB9rvvqdnYUH3a_e4HqgaeO2Aw618BYzaB3PpG-QGmdd0O4FoPi2q9qQe4770qawurr2F9QL1Y0-uuahuY11Z3vtWqU_UQqnBNLpyqg735zzHJH-b5bBEtV49Ps-ky0qnAiLHEOSFKFJpONBp0mNnMCZ2IJONGSJoIKt1hKWlcxtBJV6KxkkpuTEr5mMR_WO3bELx1xYevtofrBcXiKKs4yipOsvgvKDhexw</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Tu, Wenzhe</creator><creator>Luo, Wenjia</creator><creator>Chen, Changli</creator><creator>Chen, Kai</creator><creator>Zhu, Enbo</creator><creator>Zhao, Zipeng</creator><creator>Wang, Zelin</creator><creator>Hu, Tao</creator><creator>Zai, Huachao</creator><creator>Ke, Xiaoxing</creator><creator>Sui, Manling</creator><creator>Chen, Pengwan</creator><creator>Zhang, Qingshan</creator><creator>Chen, Qi</creator><creator>Li, Yujing</creator><creator>Huang, Yu</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5440-5343</orcidid></search><sort><creationdate>202002</creationdate><title>Tungsten as “Adhesive” in Pt 2 CuW 0.25 Ternary Alloy for Highly Durable Oxygen Reduction Electrocatalysis</title><author>Tu, Wenzhe ; Luo, Wenjia ; Chen, Changli ; Chen, Kai ; Zhu, Enbo ; Zhao, Zipeng ; Wang, Zelin ; Hu, Tao ; Zai, Huachao ; Ke, Xiaoxing ; Sui, Manling ; Chen, Pengwan ; Zhang, Qingshan ; Chen, Qi ; Li, Yujing ; Huang, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c840-226ff44b04c15c0d0f09e9f4c64693d4716417f646a7df920f7fb0de7173dd813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Wenzhe</creatorcontrib><creatorcontrib>Luo, Wenjia</creatorcontrib><creatorcontrib>Chen, Changli</creatorcontrib><creatorcontrib>Chen, Kai</creatorcontrib><creatorcontrib>Zhu, Enbo</creatorcontrib><creatorcontrib>Zhao, Zipeng</creatorcontrib><creatorcontrib>Wang, Zelin</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Zai, Huachao</creatorcontrib><creatorcontrib>Ke, Xiaoxing</creatorcontrib><creatorcontrib>Sui, Manling</creatorcontrib><creatorcontrib>Chen, Pengwan</creatorcontrib><creatorcontrib>Zhang, Qingshan</creatorcontrib><creatorcontrib>Chen, Qi</creatorcontrib><creatorcontrib>Li, Yujing</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Wenzhe</au><au>Luo, Wenjia</au><au>Chen, Changli</au><au>Chen, Kai</au><au>Zhu, Enbo</au><au>Zhao, Zipeng</au><au>Wang, Zelin</au><au>Hu, Tao</au><au>Zai, Huachao</au><au>Ke, Xiaoxing</au><au>Sui, Manling</au><au>Chen, Pengwan</au><au>Zhang, Qingshan</au><au>Chen, Qi</au><au>Li, Yujing</au><au>Huang, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tungsten as “Adhesive” in Pt 2 CuW 0.25 Ternary Alloy for Highly Durable Oxygen Reduction Electrocatalysis</atitle><jtitle>Advanced functional materials</jtitle><date>2020-02</date><risdate>2020</risdate><volume>30</volume><issue>6</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Pt‐based alloy nanocrystals have shown great success in oxygen reduction electrocatalysis owing to their unique surface and electronic structures. However, they suffer from severe stability issues due to the dissolution of non‐noble metal elements, leading to the “trade‐off” between activity and stability. In this work, targeting the stability issue of a Pt x Cu y ‐based alloy, Pt 2 CuW 0.25 ternary alloy nanoparticles are synthesized by thermal reduction strategy based on wet‐chemical method using W(CO) 6 as a reductant. Apart from the competitive activity, the obtained Pt 2 CuW 0.25 /C shows remarkable stability, whereby the area specific activity and mass activity maintain 89.5% and 95.9% of the initial values, respectively, after 30 000 cycles of accelerated polarization between 0.6 and 1.1 V (vs reversible hydrogen electrode). By using vacancy formation energy of surface Pt as the descriptor, it is found that the enhanced stability of Pt 2 CuW 0.25 /C originates mainly from the stronger bonding between W and Pt/Cu atoms, acting as an “adhesive” to stabilize the atoms from dissolution, which is further verified by chemical stability experiments. This work demonstrates a rational design strategy for ternary alloy nano‐electrocatalyst that has high thermodynamic stability while maintaining high activity by employing high‐melting‐point metal.</abstract><doi>10.1002/adfm.201908230</doi><orcidid>https://orcid.org/0000-0001-5440-5343</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-02, Vol.30 (6)
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_201908230
source Wiley Online Library All Journals
title Tungsten as “Adhesive” in Pt 2 CuW 0.25 Ternary Alloy for Highly Durable Oxygen Reduction Electrocatalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A09%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tungsten%20as%20%E2%80%9CAdhesive%E2%80%9D%20in%20Pt%202%20CuW%200.25%20Ternary%20Alloy%20for%20Highly%20Durable%20Oxygen%20Reduction%20Electrocatalysis&rft.jtitle=Advanced%20functional%20materials&rft.au=Tu,%20Wenzhe&rft.date=2020-02&rft.volume=30&rft.issue=6&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201908230&rft_dat=%3Ccrossref%3E10_1002_adfm_201908230%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true