Tungsten as “Adhesive” in Pt 2 CuW 0.25 Ternary Alloy for Highly Durable Oxygen Reduction Electrocatalysis
Pt‐based alloy nanocrystals have shown great success in oxygen reduction electrocatalysis owing to their unique surface and electronic structures. However, they suffer from severe stability issues due to the dissolution of non‐noble metal elements, leading to the “trade‐off” between activity and sta...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-02, Vol.30 (6) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Tu, Wenzhe Luo, Wenjia Chen, Changli Chen, Kai Zhu, Enbo Zhao, Zipeng Wang, Zelin Hu, Tao Zai, Huachao Ke, Xiaoxing Sui, Manling Chen, Pengwan Zhang, Qingshan Chen, Qi Li, Yujing Huang, Yu |
description | Pt‐based alloy nanocrystals have shown great success in oxygen reduction electrocatalysis owing to their unique surface and electronic structures. However, they suffer from severe stability issues due to the dissolution of non‐noble metal elements, leading to the “trade‐off” between activity and stability. In this work, targeting the stability issue of a Pt
x
Cu
y
‐based alloy, Pt
2
CuW
0.25
ternary alloy nanoparticles are synthesized by thermal reduction strategy based on wet‐chemical method using W(CO)
6
as a reductant. Apart from the competitive activity, the obtained Pt
2
CuW
0.25
/C shows remarkable stability, whereby the area specific activity and mass activity maintain 89.5% and 95.9% of the initial values, respectively, after 30 000 cycles of accelerated polarization between 0.6 and 1.1 V (vs reversible hydrogen electrode). By using vacancy formation energy of surface Pt as the descriptor, it is found that the enhanced stability of Pt
2
CuW
0.25
/C originates mainly from the stronger bonding between W and Pt/Cu atoms, acting as an “adhesive” to stabilize the atoms from dissolution, which is further verified by chemical stability experiments. This work demonstrates a rational design strategy for ternary alloy nano‐electrocatalyst that has high thermodynamic stability while maintaining high activity by employing high‐melting‐point metal. |
doi_str_mv | 10.1002/adfm.201908230 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_201908230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_201908230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c840-226ff44b04c15c0d0f09e9f4c64693d4716417f646a7df920f7fb0de7173dd813</originalsourceid><addsrcrecordid>eNo9kMtKw0AYhQdRsFa3rv8XSPzn0kyyLLVaoVCRgO7CZC5tJE1kJhGz64Poy_VJbFG6OudsPg4fIbcUY4rI7pRx25ghzTBlHM_IiCY0iTiy9PzU6dsluQrhHZFKycWINHnfrENnG1AB9rvvqdnYUH3a_e4HqgaeO2Aw618BYzaB3PpG-QGmdd0O4FoPi2q9qQe4770qawurr2F9QL1Y0-uuahuY11Z3vtWqU_UQqnBNLpyqg735zzHJH-b5bBEtV49Ps-ky0qnAiLHEOSFKFJpONBp0mNnMCZ2IJONGSJoIKt1hKWlcxtBJV6KxkkpuTEr5mMR_WO3bELx1xYevtofrBcXiKKs4yipOsvgvKDhexw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tungsten as “Adhesive” in Pt 2 CuW 0.25 Ternary Alloy for Highly Durable Oxygen Reduction Electrocatalysis</title><source>Wiley Online Library All Journals</source><creator>Tu, Wenzhe ; Luo, Wenjia ; Chen, Changli ; Chen, Kai ; Zhu, Enbo ; Zhao, Zipeng ; Wang, Zelin ; Hu, Tao ; Zai, Huachao ; Ke, Xiaoxing ; Sui, Manling ; Chen, Pengwan ; Zhang, Qingshan ; Chen, Qi ; Li, Yujing ; Huang, Yu</creator><creatorcontrib>Tu, Wenzhe ; Luo, Wenjia ; Chen, Changli ; Chen, Kai ; Zhu, Enbo ; Zhao, Zipeng ; Wang, Zelin ; Hu, Tao ; Zai, Huachao ; Ke, Xiaoxing ; Sui, Manling ; Chen, Pengwan ; Zhang, Qingshan ; Chen, Qi ; Li, Yujing ; Huang, Yu</creatorcontrib><description>Pt‐based alloy nanocrystals have shown great success in oxygen reduction electrocatalysis owing to their unique surface and electronic structures. However, they suffer from severe stability issues due to the dissolution of non‐noble metal elements, leading to the “trade‐off” between activity and stability. In this work, targeting the stability issue of a Pt
x
Cu
y
‐based alloy, Pt
2
CuW
0.25
ternary alloy nanoparticles are synthesized by thermal reduction strategy based on wet‐chemical method using W(CO)
6
as a reductant. Apart from the competitive activity, the obtained Pt
2
CuW
0.25
/C shows remarkable stability, whereby the area specific activity and mass activity maintain 89.5% and 95.9% of the initial values, respectively, after 30 000 cycles of accelerated polarization between 0.6 and 1.1 V (vs reversible hydrogen electrode). By using vacancy formation energy of surface Pt as the descriptor, it is found that the enhanced stability of Pt
2
CuW
0.25
/C originates mainly from the stronger bonding between W and Pt/Cu atoms, acting as an “adhesive” to stabilize the atoms from dissolution, which is further verified by chemical stability experiments. This work demonstrates a rational design strategy for ternary alloy nano‐electrocatalyst that has high thermodynamic stability while maintaining high activity by employing high‐melting‐point metal.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201908230</identifier><language>eng</language><ispartof>Advanced functional materials, 2020-02, Vol.30 (6)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c840-226ff44b04c15c0d0f09e9f4c64693d4716417f646a7df920f7fb0de7173dd813</citedby><cites>FETCH-LOGICAL-c840-226ff44b04c15c0d0f09e9f4c64693d4716417f646a7df920f7fb0de7173dd813</cites><orcidid>0000-0001-5440-5343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tu, Wenzhe</creatorcontrib><creatorcontrib>Luo, Wenjia</creatorcontrib><creatorcontrib>Chen, Changli</creatorcontrib><creatorcontrib>Chen, Kai</creatorcontrib><creatorcontrib>Zhu, Enbo</creatorcontrib><creatorcontrib>Zhao, Zipeng</creatorcontrib><creatorcontrib>Wang, Zelin</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Zai, Huachao</creatorcontrib><creatorcontrib>Ke, Xiaoxing</creatorcontrib><creatorcontrib>Sui, Manling</creatorcontrib><creatorcontrib>Chen, Pengwan</creatorcontrib><creatorcontrib>Zhang, Qingshan</creatorcontrib><creatorcontrib>Chen, Qi</creatorcontrib><creatorcontrib>Li, Yujing</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><title>Tungsten as “Adhesive” in Pt 2 CuW 0.25 Ternary Alloy for Highly Durable Oxygen Reduction Electrocatalysis</title><title>Advanced functional materials</title><description>Pt‐based alloy nanocrystals have shown great success in oxygen reduction electrocatalysis owing to their unique surface and electronic structures. However, they suffer from severe stability issues due to the dissolution of non‐noble metal elements, leading to the “trade‐off” between activity and stability. In this work, targeting the stability issue of a Pt
x
Cu
y
‐based alloy, Pt
2
CuW
0.25
ternary alloy nanoparticles are synthesized by thermal reduction strategy based on wet‐chemical method using W(CO)
6
as a reductant. Apart from the competitive activity, the obtained Pt
2
CuW
0.25
/C shows remarkable stability, whereby the area specific activity and mass activity maintain 89.5% and 95.9% of the initial values, respectively, after 30 000 cycles of accelerated polarization between 0.6 and 1.1 V (vs reversible hydrogen electrode). By using vacancy formation energy of surface Pt as the descriptor, it is found that the enhanced stability of Pt
2
CuW
0.25
/C originates mainly from the stronger bonding between W and Pt/Cu atoms, acting as an “adhesive” to stabilize the atoms from dissolution, which is further verified by chemical stability experiments. This work demonstrates a rational design strategy for ternary alloy nano‐electrocatalyst that has high thermodynamic stability while maintaining high activity by employing high‐melting‐point metal.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKw0AYhQdRsFa3rv8XSPzn0kyyLLVaoVCRgO7CZC5tJE1kJhGz64Poy_VJbFG6OudsPg4fIbcUY4rI7pRx25ghzTBlHM_IiCY0iTiy9PzU6dsluQrhHZFKycWINHnfrENnG1AB9rvvqdnYUH3a_e4HqgaeO2Aw618BYzaB3PpG-QGmdd0O4FoPi2q9qQe4770qawurr2F9QL1Y0-uuahuY11Z3vtWqU_UQqnBNLpyqg735zzHJH-b5bBEtV49Ps-ky0qnAiLHEOSFKFJpONBp0mNnMCZ2IJONGSJoIKt1hKWlcxtBJV6KxkkpuTEr5mMR_WO3bELx1xYevtofrBcXiKKs4yipOsvgvKDhexw</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Tu, Wenzhe</creator><creator>Luo, Wenjia</creator><creator>Chen, Changli</creator><creator>Chen, Kai</creator><creator>Zhu, Enbo</creator><creator>Zhao, Zipeng</creator><creator>Wang, Zelin</creator><creator>Hu, Tao</creator><creator>Zai, Huachao</creator><creator>Ke, Xiaoxing</creator><creator>Sui, Manling</creator><creator>Chen, Pengwan</creator><creator>Zhang, Qingshan</creator><creator>Chen, Qi</creator><creator>Li, Yujing</creator><creator>Huang, Yu</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5440-5343</orcidid></search><sort><creationdate>202002</creationdate><title>Tungsten as “Adhesive” in Pt 2 CuW 0.25 Ternary Alloy for Highly Durable Oxygen Reduction Electrocatalysis</title><author>Tu, Wenzhe ; Luo, Wenjia ; Chen, Changli ; Chen, Kai ; Zhu, Enbo ; Zhao, Zipeng ; Wang, Zelin ; Hu, Tao ; Zai, Huachao ; Ke, Xiaoxing ; Sui, Manling ; Chen, Pengwan ; Zhang, Qingshan ; Chen, Qi ; Li, Yujing ; Huang, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c840-226ff44b04c15c0d0f09e9f4c64693d4716417f646a7df920f7fb0de7173dd813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Wenzhe</creatorcontrib><creatorcontrib>Luo, Wenjia</creatorcontrib><creatorcontrib>Chen, Changli</creatorcontrib><creatorcontrib>Chen, Kai</creatorcontrib><creatorcontrib>Zhu, Enbo</creatorcontrib><creatorcontrib>Zhao, Zipeng</creatorcontrib><creatorcontrib>Wang, Zelin</creatorcontrib><creatorcontrib>Hu, Tao</creatorcontrib><creatorcontrib>Zai, Huachao</creatorcontrib><creatorcontrib>Ke, Xiaoxing</creatorcontrib><creatorcontrib>Sui, Manling</creatorcontrib><creatorcontrib>Chen, Pengwan</creatorcontrib><creatorcontrib>Zhang, Qingshan</creatorcontrib><creatorcontrib>Chen, Qi</creatorcontrib><creatorcontrib>Li, Yujing</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Wenzhe</au><au>Luo, Wenjia</au><au>Chen, Changli</au><au>Chen, Kai</au><au>Zhu, Enbo</au><au>Zhao, Zipeng</au><au>Wang, Zelin</au><au>Hu, Tao</au><au>Zai, Huachao</au><au>Ke, Xiaoxing</au><au>Sui, Manling</au><au>Chen, Pengwan</au><au>Zhang, Qingshan</au><au>Chen, Qi</au><au>Li, Yujing</au><au>Huang, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tungsten as “Adhesive” in Pt 2 CuW 0.25 Ternary Alloy for Highly Durable Oxygen Reduction Electrocatalysis</atitle><jtitle>Advanced functional materials</jtitle><date>2020-02</date><risdate>2020</risdate><volume>30</volume><issue>6</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Pt‐based alloy nanocrystals have shown great success in oxygen reduction electrocatalysis owing to their unique surface and electronic structures. However, they suffer from severe stability issues due to the dissolution of non‐noble metal elements, leading to the “trade‐off” between activity and stability. In this work, targeting the stability issue of a Pt
x
Cu
y
‐based alloy, Pt
2
CuW
0.25
ternary alloy nanoparticles are synthesized by thermal reduction strategy based on wet‐chemical method using W(CO)
6
as a reductant. Apart from the competitive activity, the obtained Pt
2
CuW
0.25
/C shows remarkable stability, whereby the area specific activity and mass activity maintain 89.5% and 95.9% of the initial values, respectively, after 30 000 cycles of accelerated polarization between 0.6 and 1.1 V (vs reversible hydrogen electrode). By using vacancy formation energy of surface Pt as the descriptor, it is found that the enhanced stability of Pt
2
CuW
0.25
/C originates mainly from the stronger bonding between W and Pt/Cu atoms, acting as an “adhesive” to stabilize the atoms from dissolution, which is further verified by chemical stability experiments. This work demonstrates a rational design strategy for ternary alloy nano‐electrocatalyst that has high thermodynamic stability while maintaining high activity by employing high‐melting‐point metal.</abstract><doi>10.1002/adfm.201908230</doi><orcidid>https://orcid.org/0000-0001-5440-5343</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-02, Vol.30 (6) |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_crossref_primary_10_1002_adfm_201908230 |
source | Wiley Online Library All Journals |
title | Tungsten as “Adhesive” in Pt 2 CuW 0.25 Ternary Alloy for Highly Durable Oxygen Reduction Electrocatalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A09%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tungsten%20as%20%E2%80%9CAdhesive%E2%80%9D%20in%20Pt%202%20CuW%200.25%20Ternary%20Alloy%20for%20Highly%20Durable%20Oxygen%20Reduction%20Electrocatalysis&rft.jtitle=Advanced%20functional%20materials&rft.au=Tu,%20Wenzhe&rft.date=2020-02&rft.volume=30&rft.issue=6&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201908230&rft_dat=%3Ccrossref%3E10_1002_adfm_201908230%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |