Ordered Mesoporous Metastable α‐MoC 1− x with Enhanced Water Dissociation Capability for Boosting Alkaline Hydrogen Evolution Activity
The sluggish reaction kinetics of the alkaline hydrogen evolution reaction (HER) remains an important challenge for water–alkali electrolyzers, which originates predominantly from the additional water dissociation step required for the alkaline HER. In this work, it is demonstrated theoretically and...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2019-07, Vol.29 (28) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 28 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 29 |
creator | Baek, Du San Jung, Gwan Yeong Seo, Bora Kim, Jin Chul Lee, Hyun‐Wook Shin, Tae Joo Jeong, Hu Young Kwak, Sang Kyu Joo, Sang Hoon |
description | The sluggish reaction kinetics of the alkaline hydrogen evolution reaction (HER) remains an important challenge for water–alkali electrolyzers, which originates predominantly from the additional water dissociation step required for the alkaline HER. In this work, it is demonstrated theoretically and experimentally that metastable, face‐centered‐cubic α‐MoC
1−
x
phase shows superior water dissociation capability and alkaline HER activity than stable, hexagonal‐close‐packed Mo
2
C phase. Next, high surface area ordered mesoporous α‐MoC
1−
x
(MMC) is designed via a nanocasting method. In MMC structure, the α‐MoC
1−
x
phase facilitates the water dissociation reaction, while the mesoporous structure with high surface area enables a high dispersion of metal NPs and efficient mass transport. As a result, Pt nanoparticles (NPs) supported on MMC (Pt/MMC) show substantially enhanced alkaline HER activity in terms of overpotentials, Tafel slopes, mass and specific activities, and exchange current densities, compared to commercial Pt/C and Pt NPs supported on particulate α‐MoC
1−
x
or β‐Mo
2
C. Notably, Pt/MMC shows very low Tafel slope of 30 mV dec
–1
, which is the lowest value among the reported Pt‐based alkaline HER catalysts, suggesting the critical role of MMC in enhancing the HER kinetics. The promotional effect of MMC support in the alkaline HER is further demonstrated with an Ir/MMC catalyst. |
doi_str_mv | 10.1002/adfm.201901217 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_201901217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_201901217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c847-79945412b29d22cea9d2fc775779f085871eb4f1f690758acb8a8c6d358ae0b43</originalsourceid><addsrcrecordid>eNo9kD9OwzAcRi0EEqWwMvsCKbbzx8lYQqFIrbpUgi36xbFbQxpXtlvajRGJBXETLsIhehJSQJ2-t7xveAhdUtKjhLArqNSixwjNCGWUH6EOTWgShISlxwemj6fozLknQijnYdRB7xNbSSsrPJbOLI01K9eiB-ehrCX-_tq9foxNjunu7RNv8Iv2czxo5tCI1nkALy2-0c4ZocFr0-AcllDqWvstVsbia2Oc180M9-tnqHUj8XBbWTOTDR6sTb36dfrC63VrnKMTBbWTF__bRdPbwTQfBqPJ3X3eHwUijXjAsyyKI8pKllWMCQntKMF5zHmmSBqnnMoyUlQlGeFxCqJMIRVJFbYsSRmFXdT7uxXWOGelKpZWL8BuC0qKfcliX7I4lAx_AGAYa-8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ordered Mesoporous Metastable α‐MoC 1− x with Enhanced Water Dissociation Capability for Boosting Alkaline Hydrogen Evolution Activity</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Baek, Du San ; Jung, Gwan Yeong ; Seo, Bora ; Kim, Jin Chul ; Lee, Hyun‐Wook ; Shin, Tae Joo ; Jeong, Hu Young ; Kwak, Sang Kyu ; Joo, Sang Hoon</creator><creatorcontrib>Baek, Du San ; Jung, Gwan Yeong ; Seo, Bora ; Kim, Jin Chul ; Lee, Hyun‐Wook ; Shin, Tae Joo ; Jeong, Hu Young ; Kwak, Sang Kyu ; Joo, Sang Hoon</creatorcontrib><description>The sluggish reaction kinetics of the alkaline hydrogen evolution reaction (HER) remains an important challenge for water–alkali electrolyzers, which originates predominantly from the additional water dissociation step required for the alkaline HER. In this work, it is demonstrated theoretically and experimentally that metastable, face‐centered‐cubic α‐MoC
1−
x
phase shows superior water dissociation capability and alkaline HER activity than stable, hexagonal‐close‐packed Mo
2
C phase. Next, high surface area ordered mesoporous α‐MoC
1−
x
(MMC) is designed via a nanocasting method. In MMC structure, the α‐MoC
1−
x
phase facilitates the water dissociation reaction, while the mesoporous structure with high surface area enables a high dispersion of metal NPs and efficient mass transport. As a result, Pt nanoparticles (NPs) supported on MMC (Pt/MMC) show substantially enhanced alkaline HER activity in terms of overpotentials, Tafel slopes, mass and specific activities, and exchange current densities, compared to commercial Pt/C and Pt NPs supported on particulate α‐MoC
1−
x
or β‐Mo
2
C. Notably, Pt/MMC shows very low Tafel slope of 30 mV dec
–1
, which is the lowest value among the reported Pt‐based alkaline HER catalysts, suggesting the critical role of MMC in enhancing the HER kinetics. The promotional effect of MMC support in the alkaline HER is further demonstrated with an Ir/MMC catalyst.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201901217</identifier><language>eng</language><ispartof>Advanced functional materials, 2019-07, Vol.29 (28)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c847-79945412b29d22cea9d2fc775779f085871eb4f1f690758acb8a8c6d358ae0b43</citedby><cites>FETCH-LOGICAL-c847-79945412b29d22cea9d2fc775779f085871eb4f1f690758acb8a8c6d358ae0b43</cites><orcidid>0000-0002-8941-9662 ; 0000-0003-0446-5668 ; 0000-0002-4387-0706 ; 0000-0002-0332-1534 ; 0000-0002-1438-3298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Baek, Du San</creatorcontrib><creatorcontrib>Jung, Gwan Yeong</creatorcontrib><creatorcontrib>Seo, Bora</creatorcontrib><creatorcontrib>Kim, Jin Chul</creatorcontrib><creatorcontrib>Lee, Hyun‐Wook</creatorcontrib><creatorcontrib>Shin, Tae Joo</creatorcontrib><creatorcontrib>Jeong, Hu Young</creatorcontrib><creatorcontrib>Kwak, Sang Kyu</creatorcontrib><creatorcontrib>Joo, Sang Hoon</creatorcontrib><title>Ordered Mesoporous Metastable α‐MoC 1− x with Enhanced Water Dissociation Capability for Boosting Alkaline Hydrogen Evolution Activity</title><title>Advanced functional materials</title><description>The sluggish reaction kinetics of the alkaline hydrogen evolution reaction (HER) remains an important challenge for water–alkali electrolyzers, which originates predominantly from the additional water dissociation step required for the alkaline HER. In this work, it is demonstrated theoretically and experimentally that metastable, face‐centered‐cubic α‐MoC
1−
x
phase shows superior water dissociation capability and alkaline HER activity than stable, hexagonal‐close‐packed Mo
2
C phase. Next, high surface area ordered mesoporous α‐MoC
1−
x
(MMC) is designed via a nanocasting method. In MMC structure, the α‐MoC
1−
x
phase facilitates the water dissociation reaction, while the mesoporous structure with high surface area enables a high dispersion of metal NPs and efficient mass transport. As a result, Pt nanoparticles (NPs) supported on MMC (Pt/MMC) show substantially enhanced alkaline HER activity in terms of overpotentials, Tafel slopes, mass and specific activities, and exchange current densities, compared to commercial Pt/C and Pt NPs supported on particulate α‐MoC
1−
x
or β‐Mo
2
C. Notably, Pt/MMC shows very low Tafel slope of 30 mV dec
–1
, which is the lowest value among the reported Pt‐based alkaline HER catalysts, suggesting the critical role of MMC in enhancing the HER kinetics. The promotional effect of MMC support in the alkaline HER is further demonstrated with an Ir/MMC catalyst.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kD9OwzAcRi0EEqWwMvsCKbbzx8lYQqFIrbpUgi36xbFbQxpXtlvajRGJBXETLsIhehJSQJ2-t7xveAhdUtKjhLArqNSixwjNCGWUH6EOTWgShISlxwemj6fozLknQijnYdRB7xNbSSsrPJbOLI01K9eiB-ehrCX-_tq9foxNjunu7RNv8Iv2czxo5tCI1nkALy2-0c4ZocFr0-AcllDqWvstVsbia2Oc180M9-tnqHUj8XBbWTOTDR6sTb36dfrC63VrnKMTBbWTF__bRdPbwTQfBqPJ3X3eHwUijXjAsyyKI8pKllWMCQntKMF5zHmmSBqnnMoyUlQlGeFxCqJMIRVJFbYsSRmFXdT7uxXWOGelKpZWL8BuC0qKfcliX7I4lAx_AGAYa-8</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Baek, Du San</creator><creator>Jung, Gwan Yeong</creator><creator>Seo, Bora</creator><creator>Kim, Jin Chul</creator><creator>Lee, Hyun‐Wook</creator><creator>Shin, Tae Joo</creator><creator>Jeong, Hu Young</creator><creator>Kwak, Sang Kyu</creator><creator>Joo, Sang Hoon</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8941-9662</orcidid><orcidid>https://orcid.org/0000-0003-0446-5668</orcidid><orcidid>https://orcid.org/0000-0002-4387-0706</orcidid><orcidid>https://orcid.org/0000-0002-0332-1534</orcidid><orcidid>https://orcid.org/0000-0002-1438-3298</orcidid></search><sort><creationdate>201907</creationdate><title>Ordered Mesoporous Metastable α‐MoC 1− x with Enhanced Water Dissociation Capability for Boosting Alkaline Hydrogen Evolution Activity</title><author>Baek, Du San ; Jung, Gwan Yeong ; Seo, Bora ; Kim, Jin Chul ; Lee, Hyun‐Wook ; Shin, Tae Joo ; Jeong, Hu Young ; Kwak, Sang Kyu ; Joo, Sang Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c847-79945412b29d22cea9d2fc775779f085871eb4f1f690758acb8a8c6d358ae0b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baek, Du San</creatorcontrib><creatorcontrib>Jung, Gwan Yeong</creatorcontrib><creatorcontrib>Seo, Bora</creatorcontrib><creatorcontrib>Kim, Jin Chul</creatorcontrib><creatorcontrib>Lee, Hyun‐Wook</creatorcontrib><creatorcontrib>Shin, Tae Joo</creatorcontrib><creatorcontrib>Jeong, Hu Young</creatorcontrib><creatorcontrib>Kwak, Sang Kyu</creatorcontrib><creatorcontrib>Joo, Sang Hoon</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baek, Du San</au><au>Jung, Gwan Yeong</au><au>Seo, Bora</au><au>Kim, Jin Chul</au><au>Lee, Hyun‐Wook</au><au>Shin, Tae Joo</au><au>Jeong, Hu Young</au><au>Kwak, Sang Kyu</au><au>Joo, Sang Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ordered Mesoporous Metastable α‐MoC 1− x with Enhanced Water Dissociation Capability for Boosting Alkaline Hydrogen Evolution Activity</atitle><jtitle>Advanced functional materials</jtitle><date>2019-07</date><risdate>2019</risdate><volume>29</volume><issue>28</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The sluggish reaction kinetics of the alkaline hydrogen evolution reaction (HER) remains an important challenge for water–alkali electrolyzers, which originates predominantly from the additional water dissociation step required for the alkaline HER. In this work, it is demonstrated theoretically and experimentally that metastable, face‐centered‐cubic α‐MoC
1−
x
phase shows superior water dissociation capability and alkaline HER activity than stable, hexagonal‐close‐packed Mo
2
C phase. Next, high surface area ordered mesoporous α‐MoC
1−
x
(MMC) is designed via a nanocasting method. In MMC structure, the α‐MoC
1−
x
phase facilitates the water dissociation reaction, while the mesoporous structure with high surface area enables a high dispersion of metal NPs and efficient mass transport. As a result, Pt nanoparticles (NPs) supported on MMC (Pt/MMC) show substantially enhanced alkaline HER activity in terms of overpotentials, Tafel slopes, mass and specific activities, and exchange current densities, compared to commercial Pt/C and Pt NPs supported on particulate α‐MoC
1−
x
or β‐Mo
2
C. Notably, Pt/MMC shows very low Tafel slope of 30 mV dec
–1
, which is the lowest value among the reported Pt‐based alkaline HER catalysts, suggesting the critical role of MMC in enhancing the HER kinetics. The promotional effect of MMC support in the alkaline HER is further demonstrated with an Ir/MMC catalyst.</abstract><doi>10.1002/adfm.201901217</doi><orcidid>https://orcid.org/0000-0002-8941-9662</orcidid><orcidid>https://orcid.org/0000-0003-0446-5668</orcidid><orcidid>https://orcid.org/0000-0002-4387-0706</orcidid><orcidid>https://orcid.org/0000-0002-0332-1534</orcidid><orcidid>https://orcid.org/0000-0002-1438-3298</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2019-07, Vol.29 (28) |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_crossref_primary_10_1002_adfm_201901217 |
source | Wiley Online Library Journals Frontfile Complete |
title | Ordered Mesoporous Metastable α‐MoC 1− x with Enhanced Water Dissociation Capability for Boosting Alkaline Hydrogen Evolution Activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ordered%20Mesoporous%20Metastable%20%CE%B1%E2%80%90MoC%201%E2%88%92%20x%20with%20Enhanced%20Water%20Dissociation%20Capability%20for%20Boosting%20Alkaline%20Hydrogen%20Evolution%20Activity&rft.jtitle=Advanced%20functional%20materials&rft.au=Baek,%20Du%20San&rft.date=2019-07&rft.volume=29&rft.issue=28&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201901217&rft_dat=%3Ccrossref%3E10_1002_adfm_201901217%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |