Ordered Mesoporous Metastable α‐MoC 1− x with Enhanced Water Dissociation Capability for Boosting Alkaline Hydrogen Evolution Activity

The sluggish reaction kinetics of the alkaline hydrogen evolution reaction (HER) remains an important challenge for water–alkali electrolyzers, which originates predominantly from the additional water dissociation step required for the alkaline HER. In this work, it is demonstrated theoretically and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2019-07, Vol.29 (28)
Hauptverfasser: Baek, Du San, Jung, Gwan Yeong, Seo, Bora, Kim, Jin Chul, Lee, Hyun‐Wook, Shin, Tae Joo, Jeong, Hu Young, Kwak, Sang Kyu, Joo, Sang Hoon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 28
container_start_page
container_title Advanced functional materials
container_volume 29
creator Baek, Du San
Jung, Gwan Yeong
Seo, Bora
Kim, Jin Chul
Lee, Hyun‐Wook
Shin, Tae Joo
Jeong, Hu Young
Kwak, Sang Kyu
Joo, Sang Hoon
description The sluggish reaction kinetics of the alkaline hydrogen evolution reaction (HER) remains an important challenge for water–alkali electrolyzers, which originates predominantly from the additional water dissociation step required for the alkaline HER. In this work, it is demonstrated theoretically and experimentally that metastable, face‐centered‐cubic α‐MoC 1− x phase shows superior water dissociation capability and alkaline HER activity than stable, hexagonal‐close‐packed Mo 2 C phase. Next, high surface area ordered mesoporous α‐MoC 1− x (MMC) is designed via a nanocasting method. In MMC structure, the α‐MoC 1− x phase facilitates the water dissociation reaction, while the mesoporous structure with high surface area enables a high dispersion of metal NPs and efficient mass transport. As a result, Pt nanoparticles (NPs) supported on MMC (Pt/MMC) show substantially enhanced alkaline HER activity in terms of overpotentials, Tafel slopes, mass and specific activities, and exchange current densities, compared to commercial Pt/C and Pt NPs supported on particulate α‐MoC 1− x or β‐Mo 2 C. Notably, Pt/MMC shows very low Tafel slope of 30 mV dec –1 , which is the lowest value among the reported Pt‐based alkaline HER catalysts, suggesting the critical role of MMC in enhancing the HER kinetics. The promotional effect of MMC support in the alkaline HER is further demonstrated with an Ir/MMC catalyst.
doi_str_mv 10.1002/adfm.201901217
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_201901217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_adfm_201901217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c847-79945412b29d22cea9d2fc775779f085871eb4f1f690758acb8a8c6d358ae0b43</originalsourceid><addsrcrecordid>eNo9kD9OwzAcRi0EEqWwMvsCKbbzx8lYQqFIrbpUgi36xbFbQxpXtlvajRGJBXETLsIhehJSQJ2-t7xveAhdUtKjhLArqNSixwjNCGWUH6EOTWgShISlxwemj6fozLknQijnYdRB7xNbSSsrPJbOLI01K9eiB-ehrCX-_tq9foxNjunu7RNv8Iv2czxo5tCI1nkALy2-0c4ZocFr0-AcllDqWvstVsbia2Oc180M9-tnqHUj8XBbWTOTDR6sTb36dfrC63VrnKMTBbWTF__bRdPbwTQfBqPJ3X3eHwUijXjAsyyKI8pKllWMCQntKMF5zHmmSBqnnMoyUlQlGeFxCqJMIRVJFbYsSRmFXdT7uxXWOGelKpZWL8BuC0qKfcliX7I4lAx_AGAYa-8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ordered Mesoporous Metastable α‐MoC 1− x with Enhanced Water Dissociation Capability for Boosting Alkaline Hydrogen Evolution Activity</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Baek, Du San ; Jung, Gwan Yeong ; Seo, Bora ; Kim, Jin Chul ; Lee, Hyun‐Wook ; Shin, Tae Joo ; Jeong, Hu Young ; Kwak, Sang Kyu ; Joo, Sang Hoon</creator><creatorcontrib>Baek, Du San ; Jung, Gwan Yeong ; Seo, Bora ; Kim, Jin Chul ; Lee, Hyun‐Wook ; Shin, Tae Joo ; Jeong, Hu Young ; Kwak, Sang Kyu ; Joo, Sang Hoon</creatorcontrib><description>The sluggish reaction kinetics of the alkaline hydrogen evolution reaction (HER) remains an important challenge for water–alkali electrolyzers, which originates predominantly from the additional water dissociation step required for the alkaline HER. In this work, it is demonstrated theoretically and experimentally that metastable, face‐centered‐cubic α‐MoC 1− x phase shows superior water dissociation capability and alkaline HER activity than stable, hexagonal‐close‐packed Mo 2 C phase. Next, high surface area ordered mesoporous α‐MoC 1− x (MMC) is designed via a nanocasting method. In MMC structure, the α‐MoC 1− x phase facilitates the water dissociation reaction, while the mesoporous structure with high surface area enables a high dispersion of metal NPs and efficient mass transport. As a result, Pt nanoparticles (NPs) supported on MMC (Pt/MMC) show substantially enhanced alkaline HER activity in terms of overpotentials, Tafel slopes, mass and specific activities, and exchange current densities, compared to commercial Pt/C and Pt NPs supported on particulate α‐MoC 1− x or β‐Mo 2 C. Notably, Pt/MMC shows very low Tafel slope of 30 mV dec –1 , which is the lowest value among the reported Pt‐based alkaline HER catalysts, suggesting the critical role of MMC in enhancing the HER kinetics. The promotional effect of MMC support in the alkaline HER is further demonstrated with an Ir/MMC catalyst.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201901217</identifier><language>eng</language><ispartof>Advanced functional materials, 2019-07, Vol.29 (28)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c847-79945412b29d22cea9d2fc775779f085871eb4f1f690758acb8a8c6d358ae0b43</citedby><cites>FETCH-LOGICAL-c847-79945412b29d22cea9d2fc775779f085871eb4f1f690758acb8a8c6d358ae0b43</cites><orcidid>0000-0002-8941-9662 ; 0000-0003-0446-5668 ; 0000-0002-4387-0706 ; 0000-0002-0332-1534 ; 0000-0002-1438-3298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Baek, Du San</creatorcontrib><creatorcontrib>Jung, Gwan Yeong</creatorcontrib><creatorcontrib>Seo, Bora</creatorcontrib><creatorcontrib>Kim, Jin Chul</creatorcontrib><creatorcontrib>Lee, Hyun‐Wook</creatorcontrib><creatorcontrib>Shin, Tae Joo</creatorcontrib><creatorcontrib>Jeong, Hu Young</creatorcontrib><creatorcontrib>Kwak, Sang Kyu</creatorcontrib><creatorcontrib>Joo, Sang Hoon</creatorcontrib><title>Ordered Mesoporous Metastable α‐MoC 1− x with Enhanced Water Dissociation Capability for Boosting Alkaline Hydrogen Evolution Activity</title><title>Advanced functional materials</title><description>The sluggish reaction kinetics of the alkaline hydrogen evolution reaction (HER) remains an important challenge for water–alkali electrolyzers, which originates predominantly from the additional water dissociation step required for the alkaline HER. In this work, it is demonstrated theoretically and experimentally that metastable, face‐centered‐cubic α‐MoC 1− x phase shows superior water dissociation capability and alkaline HER activity than stable, hexagonal‐close‐packed Mo 2 C phase. Next, high surface area ordered mesoporous α‐MoC 1− x (MMC) is designed via a nanocasting method. In MMC structure, the α‐MoC 1− x phase facilitates the water dissociation reaction, while the mesoporous structure with high surface area enables a high dispersion of metal NPs and efficient mass transport. As a result, Pt nanoparticles (NPs) supported on MMC (Pt/MMC) show substantially enhanced alkaline HER activity in terms of overpotentials, Tafel slopes, mass and specific activities, and exchange current densities, compared to commercial Pt/C and Pt NPs supported on particulate α‐MoC 1− x or β‐Mo 2 C. Notably, Pt/MMC shows very low Tafel slope of 30 mV dec –1 , which is the lowest value among the reported Pt‐based alkaline HER catalysts, suggesting the critical role of MMC in enhancing the HER kinetics. The promotional effect of MMC support in the alkaline HER is further demonstrated with an Ir/MMC catalyst.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kD9OwzAcRi0EEqWwMvsCKbbzx8lYQqFIrbpUgi36xbFbQxpXtlvajRGJBXETLsIhehJSQJ2-t7xveAhdUtKjhLArqNSixwjNCGWUH6EOTWgShISlxwemj6fozLknQijnYdRB7xNbSSsrPJbOLI01K9eiB-ehrCX-_tq9foxNjunu7RNv8Iv2czxo5tCI1nkALy2-0c4ZocFr0-AcllDqWvstVsbia2Oc180M9-tnqHUj8XBbWTOTDR6sTb36dfrC63VrnKMTBbWTF__bRdPbwTQfBqPJ3X3eHwUijXjAsyyKI8pKllWMCQntKMF5zHmmSBqnnMoyUlQlGeFxCqJMIRVJFbYsSRmFXdT7uxXWOGelKpZWL8BuC0qKfcliX7I4lAx_AGAYa-8</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Baek, Du San</creator><creator>Jung, Gwan Yeong</creator><creator>Seo, Bora</creator><creator>Kim, Jin Chul</creator><creator>Lee, Hyun‐Wook</creator><creator>Shin, Tae Joo</creator><creator>Jeong, Hu Young</creator><creator>Kwak, Sang Kyu</creator><creator>Joo, Sang Hoon</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8941-9662</orcidid><orcidid>https://orcid.org/0000-0003-0446-5668</orcidid><orcidid>https://orcid.org/0000-0002-4387-0706</orcidid><orcidid>https://orcid.org/0000-0002-0332-1534</orcidid><orcidid>https://orcid.org/0000-0002-1438-3298</orcidid></search><sort><creationdate>201907</creationdate><title>Ordered Mesoporous Metastable α‐MoC 1− x with Enhanced Water Dissociation Capability for Boosting Alkaline Hydrogen Evolution Activity</title><author>Baek, Du San ; Jung, Gwan Yeong ; Seo, Bora ; Kim, Jin Chul ; Lee, Hyun‐Wook ; Shin, Tae Joo ; Jeong, Hu Young ; Kwak, Sang Kyu ; Joo, Sang Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c847-79945412b29d22cea9d2fc775779f085871eb4f1f690758acb8a8c6d358ae0b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baek, Du San</creatorcontrib><creatorcontrib>Jung, Gwan Yeong</creatorcontrib><creatorcontrib>Seo, Bora</creatorcontrib><creatorcontrib>Kim, Jin Chul</creatorcontrib><creatorcontrib>Lee, Hyun‐Wook</creatorcontrib><creatorcontrib>Shin, Tae Joo</creatorcontrib><creatorcontrib>Jeong, Hu Young</creatorcontrib><creatorcontrib>Kwak, Sang Kyu</creatorcontrib><creatorcontrib>Joo, Sang Hoon</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baek, Du San</au><au>Jung, Gwan Yeong</au><au>Seo, Bora</au><au>Kim, Jin Chul</au><au>Lee, Hyun‐Wook</au><au>Shin, Tae Joo</au><au>Jeong, Hu Young</au><au>Kwak, Sang Kyu</au><au>Joo, Sang Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ordered Mesoporous Metastable α‐MoC 1− x with Enhanced Water Dissociation Capability for Boosting Alkaline Hydrogen Evolution Activity</atitle><jtitle>Advanced functional materials</jtitle><date>2019-07</date><risdate>2019</risdate><volume>29</volume><issue>28</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The sluggish reaction kinetics of the alkaline hydrogen evolution reaction (HER) remains an important challenge for water–alkali electrolyzers, which originates predominantly from the additional water dissociation step required for the alkaline HER. In this work, it is demonstrated theoretically and experimentally that metastable, face‐centered‐cubic α‐MoC 1− x phase shows superior water dissociation capability and alkaline HER activity than stable, hexagonal‐close‐packed Mo 2 C phase. Next, high surface area ordered mesoporous α‐MoC 1− x (MMC) is designed via a nanocasting method. In MMC structure, the α‐MoC 1− x phase facilitates the water dissociation reaction, while the mesoporous structure with high surface area enables a high dispersion of metal NPs and efficient mass transport. As a result, Pt nanoparticles (NPs) supported on MMC (Pt/MMC) show substantially enhanced alkaline HER activity in terms of overpotentials, Tafel slopes, mass and specific activities, and exchange current densities, compared to commercial Pt/C and Pt NPs supported on particulate α‐MoC 1− x or β‐Mo 2 C. Notably, Pt/MMC shows very low Tafel slope of 30 mV dec –1 , which is the lowest value among the reported Pt‐based alkaline HER catalysts, suggesting the critical role of MMC in enhancing the HER kinetics. The promotional effect of MMC support in the alkaline HER is further demonstrated with an Ir/MMC catalyst.</abstract><doi>10.1002/adfm.201901217</doi><orcidid>https://orcid.org/0000-0002-8941-9662</orcidid><orcidid>https://orcid.org/0000-0003-0446-5668</orcidid><orcidid>https://orcid.org/0000-0002-4387-0706</orcidid><orcidid>https://orcid.org/0000-0002-0332-1534</orcidid><orcidid>https://orcid.org/0000-0002-1438-3298</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2019-07, Vol.29 (28)
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_201901217
source Wiley Online Library Journals Frontfile Complete
title Ordered Mesoporous Metastable α‐MoC 1− x with Enhanced Water Dissociation Capability for Boosting Alkaline Hydrogen Evolution Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ordered%20Mesoporous%20Metastable%20%CE%B1%E2%80%90MoC%201%E2%88%92%20x%20with%20Enhanced%20Water%20Dissociation%20Capability%20for%20Boosting%20Alkaline%20Hydrogen%20Evolution%20Activity&rft.jtitle=Advanced%20functional%20materials&rft.au=Baek,%20Du%20San&rft.date=2019-07&rft.volume=29&rft.issue=28&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201901217&rft_dat=%3Ccrossref%3E10_1002_adfm_201901217%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true