Heat Dissipation of Transparent Graphene Defoggers
In spite of recent successful demonstrations of flexible and transparent graphene heaters, the underlying heat‐transfer mechanism is not understood due to the complexity of the heating system. Here, graphene/glass defoggers are fabricated and the dynamic response of the temperature as a function of...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2012-11, Vol.22 (22), p.4819-4826 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4826 |
---|---|
container_issue | 22 |
container_start_page | 4819 |
container_title | Advanced functional materials |
container_volume | 22 |
creator | Bae, Jung Jun Lim, Seong Chu Han, Gang Hee Jo, Young Woo Doung, Dinh Loc Kim, Eun Sung Chae, Seung Jin Huy, Ta Quang Van Luan, Nguyen Lee, Young Hee |
description | In spite of recent successful demonstrations of flexible and transparent graphene heaters, the underlying heat‐transfer mechanism is not understood due to the complexity of the heating system. Here, graphene/glass defoggers are fabricated and the dynamic response of the temperature as a function of input electrical power is measured. The graphene/glass defoggers reveal shorter response times than Cr/glass defoggers. Furthermore, the saturated temperature of the graphene/glass defoggers is higher than for Cr/glass defoggers at a given input electrical power. The observed dynamic response to temperature is well‐fitted to the power‐balance model. The response time of graphene/glass defogger is shorter by 44% than that of the Cr/glass defogger. The convective heat‐transfer coefficient of graphene is 12.4 × 10−4 W cm−2 °C−1, similar to that of glass (11.1 × 10−4 W cm−2 °C−1) but smaller than that of chromium (17.1 × 10−4 W cm−2 °C−1). The graphene‐based system reveals the lowest convective heat‐transfer coefficient due to its ideal flat surface compared to its counterparts of carbon nanotubes (CNTs) and reduced graphene oxide (RGO)‐based systems.
A graphene/glass defogger is fabricated and the dynamic response of the temperature as a function of input electrical power is measured. The response time of the graphene/glass defogger is shorter by 44% than that of a Cr/glass defogger. The convective heat‐transfer coefficient of graphene is 12.4 × 10−4 W cm−2 °C−1, similar to that of glass (11.1 × 10−4 W cm−2 °C−1) but smaller by 27% than that of chromium (17.1 × 10−4 W cm−2 °C−1). |
doi_str_mv | 10.1002/adfm.201201155 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_201201155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADFM201201155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4335-324edab34f7c6bd85565126ece4394ad1d1eefa1700bf97a53746c1fb6a5f18c3</originalsourceid><addsrcrecordid>eNqFj01PwkAURSdGExHduu4fKM7rfJUlAQENYlSM7Cav7RusQtvMNFH-vRAMcWfykvsW99zkMHYNvAecJzdYuE0v4bA7UOqEdUCDjgVP0tPjD8tzdhHCB-dgjJAdlkwJ22hUhlA22JZ1FdUuWnisQoOeqjaaeGzeqaJoRK5erciHS3bmcB3o6je77HV8uxhO49nj5G44mMW5FELFIpFUYCakM7nOilQprSDRlJMUfYkFFEDkEAznmesbVMJInYPLNCoHaS66rHfYzX0dgidnG19u0G8tcLs3tntjezTeAf0D8FWuaftP2w5G44e_bHxgy9DS95FF_2m1EUbZt_nEvqTLp3vOn-1c_AA9hWll</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heat Dissipation of Transparent Graphene Defoggers</title><source>Access via Wiley Online Library</source><creator>Bae, Jung Jun ; Lim, Seong Chu ; Han, Gang Hee ; Jo, Young Woo ; Doung, Dinh Loc ; Kim, Eun Sung ; Chae, Seung Jin ; Huy, Ta Quang ; Van Luan, Nguyen ; Lee, Young Hee</creator><creatorcontrib>Bae, Jung Jun ; Lim, Seong Chu ; Han, Gang Hee ; Jo, Young Woo ; Doung, Dinh Loc ; Kim, Eun Sung ; Chae, Seung Jin ; Huy, Ta Quang ; Van Luan, Nguyen ; Lee, Young Hee</creatorcontrib><description>In spite of recent successful demonstrations of flexible and transparent graphene heaters, the underlying heat‐transfer mechanism is not understood due to the complexity of the heating system. Here, graphene/glass defoggers are fabricated and the dynamic response of the temperature as a function of input electrical power is measured. The graphene/glass defoggers reveal shorter response times than Cr/glass defoggers. Furthermore, the saturated temperature of the graphene/glass defoggers is higher than for Cr/glass defoggers at a given input electrical power. The observed dynamic response to temperature is well‐fitted to the power‐balance model. The response time of graphene/glass defogger is shorter by 44% than that of the Cr/glass defogger. The convective heat‐transfer coefficient of graphene is 12.4 × 10−4 W cm−2 °C−1, similar to that of glass (11.1 × 10−4 W cm−2 °C−1) but smaller than that of chromium (17.1 × 10−4 W cm−2 °C−1). The graphene‐based system reveals the lowest convective heat‐transfer coefficient due to its ideal flat surface compared to its counterparts of carbon nanotubes (CNTs) and reduced graphene oxide (RGO)‐based systems.
A graphene/glass defogger is fabricated and the dynamic response of the temperature as a function of input electrical power is measured. The response time of the graphene/glass defogger is shorter by 44% than that of a Cr/glass defogger. The convective heat‐transfer coefficient of graphene is 12.4 × 10−4 W cm−2 °C−1, similar to that of glass (11.1 × 10−4 W cm−2 °C−1) but smaller by 27% than that of chromium (17.1 × 10−4 W cm−2 °C−1).</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201201155</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>defoggers ; graphene ; heat dissipation ; heat transfer ; Joule heating</subject><ispartof>Advanced functional materials, 2012-11, Vol.22 (22), p.4819-4826</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4335-324edab34f7c6bd85565126ece4394ad1d1eefa1700bf97a53746c1fb6a5f18c3</citedby><cites>FETCH-LOGICAL-c4335-324edab34f7c6bd85565126ece4394ad1d1eefa1700bf97a53746c1fb6a5f18c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201201155$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201201155$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Bae, Jung Jun</creatorcontrib><creatorcontrib>Lim, Seong Chu</creatorcontrib><creatorcontrib>Han, Gang Hee</creatorcontrib><creatorcontrib>Jo, Young Woo</creatorcontrib><creatorcontrib>Doung, Dinh Loc</creatorcontrib><creatorcontrib>Kim, Eun Sung</creatorcontrib><creatorcontrib>Chae, Seung Jin</creatorcontrib><creatorcontrib>Huy, Ta Quang</creatorcontrib><creatorcontrib>Van Luan, Nguyen</creatorcontrib><creatorcontrib>Lee, Young Hee</creatorcontrib><title>Heat Dissipation of Transparent Graphene Defoggers</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>In spite of recent successful demonstrations of flexible and transparent graphene heaters, the underlying heat‐transfer mechanism is not understood due to the complexity of the heating system. Here, graphene/glass defoggers are fabricated and the dynamic response of the temperature as a function of input electrical power is measured. The graphene/glass defoggers reveal shorter response times than Cr/glass defoggers. Furthermore, the saturated temperature of the graphene/glass defoggers is higher than for Cr/glass defoggers at a given input electrical power. The observed dynamic response to temperature is well‐fitted to the power‐balance model. The response time of graphene/glass defogger is shorter by 44% than that of the Cr/glass defogger. The convective heat‐transfer coefficient of graphene is 12.4 × 10−4 W cm−2 °C−1, similar to that of glass (11.1 × 10−4 W cm−2 °C−1) but smaller than that of chromium (17.1 × 10−4 W cm−2 °C−1). The graphene‐based system reveals the lowest convective heat‐transfer coefficient due to its ideal flat surface compared to its counterparts of carbon nanotubes (CNTs) and reduced graphene oxide (RGO)‐based systems.
A graphene/glass defogger is fabricated and the dynamic response of the temperature as a function of input electrical power is measured. The response time of the graphene/glass defogger is shorter by 44% than that of a Cr/glass defogger. The convective heat‐transfer coefficient of graphene is 12.4 × 10−4 W cm−2 °C−1, similar to that of glass (11.1 × 10−4 W cm−2 °C−1) but smaller by 27% than that of chromium (17.1 × 10−4 W cm−2 °C−1).</description><subject>defoggers</subject><subject>graphene</subject><subject>heat dissipation</subject><subject>heat transfer</subject><subject>Joule heating</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFj01PwkAURSdGExHduu4fKM7rfJUlAQENYlSM7Cav7RusQtvMNFH-vRAMcWfykvsW99zkMHYNvAecJzdYuE0v4bA7UOqEdUCDjgVP0tPjD8tzdhHCB-dgjJAdlkwJ22hUhlA22JZ1FdUuWnisQoOeqjaaeGzeqaJoRK5erciHS3bmcB3o6je77HV8uxhO49nj5G44mMW5FELFIpFUYCakM7nOilQprSDRlJMUfYkFFEDkEAznmesbVMJInYPLNCoHaS66rHfYzX0dgidnG19u0G8tcLs3tntjezTeAf0D8FWuaftP2w5G44e_bHxgy9DS95FF_2m1EUbZt_nEvqTLp3vOn-1c_AA9hWll</recordid><startdate>20121121</startdate><enddate>20121121</enddate><creator>Bae, Jung Jun</creator><creator>Lim, Seong Chu</creator><creator>Han, Gang Hee</creator><creator>Jo, Young Woo</creator><creator>Doung, Dinh Loc</creator><creator>Kim, Eun Sung</creator><creator>Chae, Seung Jin</creator><creator>Huy, Ta Quang</creator><creator>Van Luan, Nguyen</creator><creator>Lee, Young Hee</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121121</creationdate><title>Heat Dissipation of Transparent Graphene Defoggers</title><author>Bae, Jung Jun ; Lim, Seong Chu ; Han, Gang Hee ; Jo, Young Woo ; Doung, Dinh Loc ; Kim, Eun Sung ; Chae, Seung Jin ; Huy, Ta Quang ; Van Luan, Nguyen ; Lee, Young Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4335-324edab34f7c6bd85565126ece4394ad1d1eefa1700bf97a53746c1fb6a5f18c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>defoggers</topic><topic>graphene</topic><topic>heat dissipation</topic><topic>heat transfer</topic><topic>Joule heating</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bae, Jung Jun</creatorcontrib><creatorcontrib>Lim, Seong Chu</creatorcontrib><creatorcontrib>Han, Gang Hee</creatorcontrib><creatorcontrib>Jo, Young Woo</creatorcontrib><creatorcontrib>Doung, Dinh Loc</creatorcontrib><creatorcontrib>Kim, Eun Sung</creatorcontrib><creatorcontrib>Chae, Seung Jin</creatorcontrib><creatorcontrib>Huy, Ta Quang</creatorcontrib><creatorcontrib>Van Luan, Nguyen</creatorcontrib><creatorcontrib>Lee, Young Hee</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bae, Jung Jun</au><au>Lim, Seong Chu</au><au>Han, Gang Hee</au><au>Jo, Young Woo</au><au>Doung, Dinh Loc</au><au>Kim, Eun Sung</au><au>Chae, Seung Jin</au><au>Huy, Ta Quang</au><au>Van Luan, Nguyen</au><au>Lee, Young Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Dissipation of Transparent Graphene Defoggers</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2012-11-21</date><risdate>2012</risdate><volume>22</volume><issue>22</issue><spage>4819</spage><epage>4826</epage><pages>4819-4826</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>In spite of recent successful demonstrations of flexible and transparent graphene heaters, the underlying heat‐transfer mechanism is not understood due to the complexity of the heating system. Here, graphene/glass defoggers are fabricated and the dynamic response of the temperature as a function of input electrical power is measured. The graphene/glass defoggers reveal shorter response times than Cr/glass defoggers. Furthermore, the saturated temperature of the graphene/glass defoggers is higher than for Cr/glass defoggers at a given input electrical power. The observed dynamic response to temperature is well‐fitted to the power‐balance model. The response time of graphene/glass defogger is shorter by 44% than that of the Cr/glass defogger. The convective heat‐transfer coefficient of graphene is 12.4 × 10−4 W cm−2 °C−1, similar to that of glass (11.1 × 10−4 W cm−2 °C−1) but smaller than that of chromium (17.1 × 10−4 W cm−2 °C−1). The graphene‐based system reveals the lowest convective heat‐transfer coefficient due to its ideal flat surface compared to its counterparts of carbon nanotubes (CNTs) and reduced graphene oxide (RGO)‐based systems.
A graphene/glass defogger is fabricated and the dynamic response of the temperature as a function of input electrical power is measured. The response time of the graphene/glass defogger is shorter by 44% than that of a Cr/glass defogger. The convective heat‐transfer coefficient of graphene is 12.4 × 10−4 W cm−2 °C−1, similar to that of glass (11.1 × 10−4 W cm−2 °C−1) but smaller by 27% than that of chromium (17.1 × 10−4 W cm−2 °C−1).</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.201201155</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2012-11, Vol.22 (22), p.4819-4826 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_crossref_primary_10_1002_adfm_201201155 |
source | Access via Wiley Online Library |
subjects | defoggers graphene heat dissipation heat transfer Joule heating |
title | Heat Dissipation of Transparent Graphene Defoggers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Dissipation%20of%20Transparent%20Graphene%20Defoggers&rft.jtitle=Advanced%20functional%20materials&rft.au=Bae,%20Jung%20Jun&rft.date=2012-11-21&rft.volume=22&rft.issue=22&rft.spage=4819&rft.epage=4826&rft.pages=4819-4826&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201201155&rft_dat=%3Cwiley_cross%3EADFM201201155%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |