Heat Dissipation of Transparent Graphene Defoggers

In spite of recent successful demonstrations of flexible and transparent graphene heaters, the underlying heat‐transfer mechanism is not understood due to the complexity of the heating system. Here, graphene/glass defoggers are fabricated and the dynamic response of the temperature as a function of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2012-11, Vol.22 (22), p.4819-4826
Hauptverfasser: Bae, Jung Jun, Lim, Seong Chu, Han, Gang Hee, Jo, Young Woo, Doung, Dinh Loc, Kim, Eun Sung, Chae, Seung Jin, Huy, Ta Quang, Van Luan, Nguyen, Lee, Young Hee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4826
container_issue 22
container_start_page 4819
container_title Advanced functional materials
container_volume 22
creator Bae, Jung Jun
Lim, Seong Chu
Han, Gang Hee
Jo, Young Woo
Doung, Dinh Loc
Kim, Eun Sung
Chae, Seung Jin
Huy, Ta Quang
Van Luan, Nguyen
Lee, Young Hee
description In spite of recent successful demonstrations of flexible and transparent graphene heaters, the underlying heat‐transfer mechanism is not understood due to the complexity of the heating system. Here, graphene/glass defoggers are fabricated and the dynamic response of the temperature as a function of input electrical power is measured. The graphene/glass defoggers reveal shorter response times than Cr/glass defoggers. Furthermore, the saturated temperature of the graphene/glass defoggers is higher than for Cr/glass defoggers at a given input electrical power. The observed dynamic response to temperature is well‐fitted to the power‐balance model. The response time of graphene/glass defogger is shorter by 44% than that of the Cr/glass defogger. The convective heat‐transfer coefficient of graphene is 12.4 × 10−4 W cm−2 °C−1, similar to that of glass (11.1 × 10−4 W cm−2 °C−1) but smaller than that of chromium (17.1 × 10−4 W cm−2 °C−1). The graphene‐based system reveals the lowest convective heat‐transfer coefficient due to its ideal flat surface compared to its counterparts of carbon nanotubes (CNTs) and reduced graphene oxide (RGO)‐based systems. A graphene/glass defogger is fabricated and the dynamic response of the temperature as a function of input electrical power is measured. The response time of the graphene/glass defogger is shorter by 44% than that of a Cr/glass defogger. The convective heat‐transfer coefficient of graphene is 12.4 × 10−4 W cm−2 °C−1, similar to that of glass (11.1 × 10−4 W cm−2 °C−1) but smaller by 27% than that of chromium (17.1 × 10−4 W cm−2 °C−1).
doi_str_mv 10.1002/adfm.201201155
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_201201155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADFM201201155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4335-324edab34f7c6bd85565126ece4394ad1d1eefa1700bf97a53746c1fb6a5f18c3</originalsourceid><addsrcrecordid>eNqFj01PwkAURSdGExHduu4fKM7rfJUlAQENYlSM7Cav7RusQtvMNFH-vRAMcWfykvsW99zkMHYNvAecJzdYuE0v4bA7UOqEdUCDjgVP0tPjD8tzdhHCB-dgjJAdlkwJ22hUhlA22JZ1FdUuWnisQoOeqjaaeGzeqaJoRK5erciHS3bmcB3o6je77HV8uxhO49nj5G44mMW5FELFIpFUYCakM7nOilQprSDRlJMUfYkFFEDkEAznmesbVMJInYPLNCoHaS66rHfYzX0dgidnG19u0G8tcLs3tntjezTeAf0D8FWuaftP2w5G44e_bHxgy9DS95FF_2m1EUbZt_nEvqTLp3vOn-1c_AA9hWll</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heat Dissipation of Transparent Graphene Defoggers</title><source>Access via Wiley Online Library</source><creator>Bae, Jung Jun ; Lim, Seong Chu ; Han, Gang Hee ; Jo, Young Woo ; Doung, Dinh Loc ; Kim, Eun Sung ; Chae, Seung Jin ; Huy, Ta Quang ; Van Luan, Nguyen ; Lee, Young Hee</creator><creatorcontrib>Bae, Jung Jun ; Lim, Seong Chu ; Han, Gang Hee ; Jo, Young Woo ; Doung, Dinh Loc ; Kim, Eun Sung ; Chae, Seung Jin ; Huy, Ta Quang ; Van Luan, Nguyen ; Lee, Young Hee</creatorcontrib><description>In spite of recent successful demonstrations of flexible and transparent graphene heaters, the underlying heat‐transfer mechanism is not understood due to the complexity of the heating system. Here, graphene/glass defoggers are fabricated and the dynamic response of the temperature as a function of input electrical power is measured. The graphene/glass defoggers reveal shorter response times than Cr/glass defoggers. Furthermore, the saturated temperature of the graphene/glass defoggers is higher than for Cr/glass defoggers at a given input electrical power. The observed dynamic response to temperature is well‐fitted to the power‐balance model. The response time of graphene/glass defogger is shorter by 44% than that of the Cr/glass defogger. The convective heat‐transfer coefficient of graphene is 12.4 × 10−4 W cm−2 °C−1, similar to that of glass (11.1 × 10−4 W cm−2 °C−1) but smaller than that of chromium (17.1 × 10−4 W cm−2 °C−1). The graphene‐based system reveals the lowest convective heat‐transfer coefficient due to its ideal flat surface compared to its counterparts of carbon nanotubes (CNTs) and reduced graphene oxide (RGO)‐based systems. A graphene/glass defogger is fabricated and the dynamic response of the temperature as a function of input electrical power is measured. The response time of the graphene/glass defogger is shorter by 44% than that of a Cr/glass defogger. The convective heat‐transfer coefficient of graphene is 12.4 × 10−4 W cm−2 °C−1, similar to that of glass (11.1 × 10−4 W cm−2 °C−1) but smaller by 27% than that of chromium (17.1 × 10−4 W cm−2 °C−1).</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201201155</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>defoggers ; graphene ; heat dissipation ; heat transfer ; Joule heating</subject><ispartof>Advanced functional materials, 2012-11, Vol.22 (22), p.4819-4826</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4335-324edab34f7c6bd85565126ece4394ad1d1eefa1700bf97a53746c1fb6a5f18c3</citedby><cites>FETCH-LOGICAL-c4335-324edab34f7c6bd85565126ece4394ad1d1eefa1700bf97a53746c1fb6a5f18c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201201155$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201201155$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Bae, Jung Jun</creatorcontrib><creatorcontrib>Lim, Seong Chu</creatorcontrib><creatorcontrib>Han, Gang Hee</creatorcontrib><creatorcontrib>Jo, Young Woo</creatorcontrib><creatorcontrib>Doung, Dinh Loc</creatorcontrib><creatorcontrib>Kim, Eun Sung</creatorcontrib><creatorcontrib>Chae, Seung Jin</creatorcontrib><creatorcontrib>Huy, Ta Quang</creatorcontrib><creatorcontrib>Van Luan, Nguyen</creatorcontrib><creatorcontrib>Lee, Young Hee</creatorcontrib><title>Heat Dissipation of Transparent Graphene Defoggers</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>In spite of recent successful demonstrations of flexible and transparent graphene heaters, the underlying heat‐transfer mechanism is not understood due to the complexity of the heating system. Here, graphene/glass defoggers are fabricated and the dynamic response of the temperature as a function of input electrical power is measured. The graphene/glass defoggers reveal shorter response times than Cr/glass defoggers. Furthermore, the saturated temperature of the graphene/glass defoggers is higher than for Cr/glass defoggers at a given input electrical power. The observed dynamic response to temperature is well‐fitted to the power‐balance model. The response time of graphene/glass defogger is shorter by 44% than that of the Cr/glass defogger. The convective heat‐transfer coefficient of graphene is 12.4 × 10−4 W cm−2 °C−1, similar to that of glass (11.1 × 10−4 W cm−2 °C−1) but smaller than that of chromium (17.1 × 10−4 W cm−2 °C−1). The graphene‐based system reveals the lowest convective heat‐transfer coefficient due to its ideal flat surface compared to its counterparts of carbon nanotubes (CNTs) and reduced graphene oxide (RGO)‐based systems. A graphene/glass defogger is fabricated and the dynamic response of the temperature as a function of input electrical power is measured. The response time of the graphene/glass defogger is shorter by 44% than that of a Cr/glass defogger. The convective heat‐transfer coefficient of graphene is 12.4 × 10−4 W cm−2 °C−1, similar to that of glass (11.1 × 10−4 W cm−2 °C−1) but smaller by 27% than that of chromium (17.1 × 10−4 W cm−2 °C−1).</description><subject>defoggers</subject><subject>graphene</subject><subject>heat dissipation</subject><subject>heat transfer</subject><subject>Joule heating</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFj01PwkAURSdGExHduu4fKM7rfJUlAQENYlSM7Cav7RusQtvMNFH-vRAMcWfykvsW99zkMHYNvAecJzdYuE0v4bA7UOqEdUCDjgVP0tPjD8tzdhHCB-dgjJAdlkwJ22hUhlA22JZ1FdUuWnisQoOeqjaaeGzeqaJoRK5erciHS3bmcB3o6je77HV8uxhO49nj5G44mMW5FELFIpFUYCakM7nOilQprSDRlJMUfYkFFEDkEAznmesbVMJInYPLNCoHaS66rHfYzX0dgidnG19u0G8tcLs3tntjezTeAf0D8FWuaftP2w5G44e_bHxgy9DS95FF_2m1EUbZt_nEvqTLp3vOn-1c_AA9hWll</recordid><startdate>20121121</startdate><enddate>20121121</enddate><creator>Bae, Jung Jun</creator><creator>Lim, Seong Chu</creator><creator>Han, Gang Hee</creator><creator>Jo, Young Woo</creator><creator>Doung, Dinh Loc</creator><creator>Kim, Eun Sung</creator><creator>Chae, Seung Jin</creator><creator>Huy, Ta Quang</creator><creator>Van Luan, Nguyen</creator><creator>Lee, Young Hee</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121121</creationdate><title>Heat Dissipation of Transparent Graphene Defoggers</title><author>Bae, Jung Jun ; Lim, Seong Chu ; Han, Gang Hee ; Jo, Young Woo ; Doung, Dinh Loc ; Kim, Eun Sung ; Chae, Seung Jin ; Huy, Ta Quang ; Van Luan, Nguyen ; Lee, Young Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4335-324edab34f7c6bd85565126ece4394ad1d1eefa1700bf97a53746c1fb6a5f18c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>defoggers</topic><topic>graphene</topic><topic>heat dissipation</topic><topic>heat transfer</topic><topic>Joule heating</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bae, Jung Jun</creatorcontrib><creatorcontrib>Lim, Seong Chu</creatorcontrib><creatorcontrib>Han, Gang Hee</creatorcontrib><creatorcontrib>Jo, Young Woo</creatorcontrib><creatorcontrib>Doung, Dinh Loc</creatorcontrib><creatorcontrib>Kim, Eun Sung</creatorcontrib><creatorcontrib>Chae, Seung Jin</creatorcontrib><creatorcontrib>Huy, Ta Quang</creatorcontrib><creatorcontrib>Van Luan, Nguyen</creatorcontrib><creatorcontrib>Lee, Young Hee</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bae, Jung Jun</au><au>Lim, Seong Chu</au><au>Han, Gang Hee</au><au>Jo, Young Woo</au><au>Doung, Dinh Loc</au><au>Kim, Eun Sung</au><au>Chae, Seung Jin</au><au>Huy, Ta Quang</au><au>Van Luan, Nguyen</au><au>Lee, Young Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Dissipation of Transparent Graphene Defoggers</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2012-11-21</date><risdate>2012</risdate><volume>22</volume><issue>22</issue><spage>4819</spage><epage>4826</epage><pages>4819-4826</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>In spite of recent successful demonstrations of flexible and transparent graphene heaters, the underlying heat‐transfer mechanism is not understood due to the complexity of the heating system. Here, graphene/glass defoggers are fabricated and the dynamic response of the temperature as a function of input electrical power is measured. The graphene/glass defoggers reveal shorter response times than Cr/glass defoggers. Furthermore, the saturated temperature of the graphene/glass defoggers is higher than for Cr/glass defoggers at a given input electrical power. The observed dynamic response to temperature is well‐fitted to the power‐balance model. The response time of graphene/glass defogger is shorter by 44% than that of the Cr/glass defogger. The convective heat‐transfer coefficient of graphene is 12.4 × 10−4 W cm−2 °C−1, similar to that of glass (11.1 × 10−4 W cm−2 °C−1) but smaller than that of chromium (17.1 × 10−4 W cm−2 °C−1). The graphene‐based system reveals the lowest convective heat‐transfer coefficient due to its ideal flat surface compared to its counterparts of carbon nanotubes (CNTs) and reduced graphene oxide (RGO)‐based systems. A graphene/glass defogger is fabricated and the dynamic response of the temperature as a function of input electrical power is measured. The response time of the graphene/glass defogger is shorter by 44% than that of a Cr/glass defogger. The convective heat‐transfer coefficient of graphene is 12.4 × 10−4 W cm−2 °C−1, similar to that of glass (11.1 × 10−4 W cm−2 °C−1) but smaller by 27% than that of chromium (17.1 × 10−4 W cm−2 °C−1).</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.201201155</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2012-11, Vol.22 (22), p.4819-4826
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_201201155
source Access via Wiley Online Library
subjects defoggers
graphene
heat dissipation
heat transfer
Joule heating
title Heat Dissipation of Transparent Graphene Defoggers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A46%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Dissipation%20of%20Transparent%20Graphene%20Defoggers&rft.jtitle=Advanced%20functional%20materials&rft.au=Bae,%20Jung%20Jun&rft.date=2012-11-21&rft.volume=22&rft.issue=22&rft.spage=4819&rft.epage=4826&rft.pages=4819-4826&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201201155&rft_dat=%3Cwiley_cross%3EADFM201201155%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true