Electrically Tunable Nanoporous Carbon Hybrid Actuators

A novel nanoporous carbon/electrolyte hybrid material is reported for use in actuation. The nanoporous carbon matrix provides a 3D network that combines mechanical strength, light weight, and low cost with an extremely high surface area. In contrast to lower dimensional nanomaterials, the nanoporous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2012-07, Vol.22 (14), p.3029-3034
Hauptverfasser: Shao, Li-Hua, Biener, Juergen, Jin, Hai-Jun, Biener, Monika M., Baumann, Theodore F., Weissmüller, Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3034
container_issue 14
container_start_page 3029
container_title Advanced functional materials
container_volume 22
creator Shao, Li-Hua
Biener, Juergen
Jin, Hai-Jun
Biener, Monika M.
Baumann, Theodore F.
Weissmüller, Jörg
description A novel nanoporous carbon/electrolyte hybrid material is reported for use in actuation. The nanoporous carbon matrix provides a 3D network that combines mechanical strength, light weight, and low cost with an extremely high surface area. In contrast to lower dimensional nanomaterials, the nanoporous carbon matrix can be prepared in the form of macroscopic monolithic samples that can be loaded in compression. The hybrid material is formed by infiltrating the free internal pore volume of the carbon with an electrolyte. Actuation is prompted by polarizing the internal interfaces via an applied electric bias. It is found that the strain amplitude is proportional to the Brunauer‐Emmett‐Teller (BET) mass specific surface area, with reversible volume strain amplitudes up to the exceptionally high value of 6.6%. The mass‐specific strain energy density compares favorably to reported values for piezoceramics and for nanoporous metal actuators. A novel nanoporous carbon/electrolyte hybrid material for actuation is presented. The nanoporous carbon matrix provides a 3D network that combines mechanical strength, light weight, and low cost with an extremely high surface area. The hybrid material exhibits appreciable strength and can be loaded in compression. This electrically tunable actuator reaches strain amplitudes and mass‐specific work density values that are comparable or even superior to many conventional actuation materials.
doi_str_mv 10.1002/adfm.201200245
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_201200245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_PMBL85D8_3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4335-b603dfe5672da4d8d36625f8e6146569a1c866e5215a1a58538b9a0a0ae7c0393</originalsourceid><addsrcrecordid>eNqFj8tKw0AUhgdRsFa3rvMCqXPJXLKM6U1Iq4uK7oaTyQSiaVJmEjRvb0ukuJOz-M-B8_3wIXRP8IxgTB-gKPczigk9HhG_QBMiiAgZpuryvJP3a3Tj_QfGREoWTZBc1NZ0rjJQ10Ow6xvIaxtsoWkPrWt7H6Tg8rYJ1kPuqiJITNdD1zp_i65KqL29-80pel0uduk6zJ5XT2mShSZijIe5wKwoLReSFhAVqmBCUF4qK0gkuIiBGCWE5ZRwIMAVZyqPAR_HSoNZzKZoNvYa13rvbKkPrtqDGzTB-qStT9r6rH0E4hH4qmo7_POtk_ly85cNR7bynf0-s-A-tZBMcv22XemXzWOm-Fxpxn4ARgVqMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrically Tunable Nanoporous Carbon Hybrid Actuators</title><source>Access via Wiley Online Library</source><creator>Shao, Li-Hua ; Biener, Juergen ; Jin, Hai-Jun ; Biener, Monika M. ; Baumann, Theodore F. ; Weissmüller, Jörg</creator><creatorcontrib>Shao, Li-Hua ; Biener, Juergen ; Jin, Hai-Jun ; Biener, Monika M. ; Baumann, Theodore F. ; Weissmüller, Jörg</creatorcontrib><description>A novel nanoporous carbon/electrolyte hybrid material is reported for use in actuation. The nanoporous carbon matrix provides a 3D network that combines mechanical strength, light weight, and low cost with an extremely high surface area. In contrast to lower dimensional nanomaterials, the nanoporous carbon matrix can be prepared in the form of macroscopic monolithic samples that can be loaded in compression. The hybrid material is formed by infiltrating the free internal pore volume of the carbon with an electrolyte. Actuation is prompted by polarizing the internal interfaces via an applied electric bias. It is found that the strain amplitude is proportional to the Brunauer‐Emmett‐Teller (BET) mass specific surface area, with reversible volume strain amplitudes up to the exceptionally high value of 6.6%. The mass‐specific strain energy density compares favorably to reported values for piezoceramics and for nanoporous metal actuators. A novel nanoporous carbon/electrolyte hybrid material for actuation is presented. The nanoporous carbon matrix provides a 3D network that combines mechanical strength, light weight, and low cost with an extremely high surface area. The hybrid material exhibits appreciable strength and can be loaded in compression. This electrically tunable actuator reaches strain amplitudes and mass‐specific work density values that are comparable or even superior to many conventional actuation materials.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201200245</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>actuators ; hybrid materials ; nanoporous carbon ; nanostructures</subject><ispartof>Advanced functional materials, 2012-07, Vol.22 (14), p.3029-3034</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4335-b603dfe5672da4d8d36625f8e6146569a1c866e5215a1a58538b9a0a0ae7c0393</citedby><cites>FETCH-LOGICAL-c4335-b603dfe5672da4d8d36625f8e6146569a1c866e5215a1a58538b9a0a0ae7c0393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201200245$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201200245$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Shao, Li-Hua</creatorcontrib><creatorcontrib>Biener, Juergen</creatorcontrib><creatorcontrib>Jin, Hai-Jun</creatorcontrib><creatorcontrib>Biener, Monika M.</creatorcontrib><creatorcontrib>Baumann, Theodore F.</creatorcontrib><creatorcontrib>Weissmüller, Jörg</creatorcontrib><title>Electrically Tunable Nanoporous Carbon Hybrid Actuators</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>A novel nanoporous carbon/electrolyte hybrid material is reported for use in actuation. The nanoporous carbon matrix provides a 3D network that combines mechanical strength, light weight, and low cost with an extremely high surface area. In contrast to lower dimensional nanomaterials, the nanoporous carbon matrix can be prepared in the form of macroscopic monolithic samples that can be loaded in compression. The hybrid material is formed by infiltrating the free internal pore volume of the carbon with an electrolyte. Actuation is prompted by polarizing the internal interfaces via an applied electric bias. It is found that the strain amplitude is proportional to the Brunauer‐Emmett‐Teller (BET) mass specific surface area, with reversible volume strain amplitudes up to the exceptionally high value of 6.6%. The mass‐specific strain energy density compares favorably to reported values for piezoceramics and for nanoporous metal actuators. A novel nanoporous carbon/electrolyte hybrid material for actuation is presented. The nanoporous carbon matrix provides a 3D network that combines mechanical strength, light weight, and low cost with an extremely high surface area. The hybrid material exhibits appreciable strength and can be loaded in compression. This electrically tunable actuator reaches strain amplitudes and mass‐specific work density values that are comparable or even superior to many conventional actuation materials.</description><subject>actuators</subject><subject>hybrid materials</subject><subject>nanoporous carbon</subject><subject>nanostructures</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFj8tKw0AUhgdRsFa3rvMCqXPJXLKM6U1Iq4uK7oaTyQSiaVJmEjRvb0ukuJOz-M-B8_3wIXRP8IxgTB-gKPczigk9HhG_QBMiiAgZpuryvJP3a3Tj_QfGREoWTZBc1NZ0rjJQ10Ow6xvIaxtsoWkPrWt7H6Tg8rYJ1kPuqiJITNdD1zp_i65KqL29-80pel0uduk6zJ5XT2mShSZijIe5wKwoLReSFhAVqmBCUF4qK0gkuIiBGCWE5ZRwIMAVZyqPAR_HSoNZzKZoNvYa13rvbKkPrtqDGzTB-qStT9r6rH0E4hH4qmo7_POtk_ly85cNR7bynf0-s-A-tZBMcv22XemXzWOm-Fxpxn4ARgVqMg</recordid><startdate>20120724</startdate><enddate>20120724</enddate><creator>Shao, Li-Hua</creator><creator>Biener, Juergen</creator><creator>Jin, Hai-Jun</creator><creator>Biener, Monika M.</creator><creator>Baumann, Theodore F.</creator><creator>Weissmüller, Jörg</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120724</creationdate><title>Electrically Tunable Nanoporous Carbon Hybrid Actuators</title><author>Shao, Li-Hua ; Biener, Juergen ; Jin, Hai-Jun ; Biener, Monika M. ; Baumann, Theodore F. ; Weissmüller, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4335-b603dfe5672da4d8d36625f8e6146569a1c866e5215a1a58538b9a0a0ae7c0393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>actuators</topic><topic>hybrid materials</topic><topic>nanoporous carbon</topic><topic>nanostructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Li-Hua</creatorcontrib><creatorcontrib>Biener, Juergen</creatorcontrib><creatorcontrib>Jin, Hai-Jun</creatorcontrib><creatorcontrib>Biener, Monika M.</creatorcontrib><creatorcontrib>Baumann, Theodore F.</creatorcontrib><creatorcontrib>Weissmüller, Jörg</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Li-Hua</au><au>Biener, Juergen</au><au>Jin, Hai-Jun</au><au>Biener, Monika M.</au><au>Baumann, Theodore F.</au><au>Weissmüller, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrically Tunable Nanoporous Carbon Hybrid Actuators</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2012-07-24</date><risdate>2012</risdate><volume>22</volume><issue>14</issue><spage>3029</spage><epage>3034</epage><pages>3029-3034</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>A novel nanoporous carbon/electrolyte hybrid material is reported for use in actuation. The nanoporous carbon matrix provides a 3D network that combines mechanical strength, light weight, and low cost with an extremely high surface area. In contrast to lower dimensional nanomaterials, the nanoporous carbon matrix can be prepared in the form of macroscopic monolithic samples that can be loaded in compression. The hybrid material is formed by infiltrating the free internal pore volume of the carbon with an electrolyte. Actuation is prompted by polarizing the internal interfaces via an applied electric bias. It is found that the strain amplitude is proportional to the Brunauer‐Emmett‐Teller (BET) mass specific surface area, with reversible volume strain amplitudes up to the exceptionally high value of 6.6%. The mass‐specific strain energy density compares favorably to reported values for piezoceramics and for nanoporous metal actuators. A novel nanoporous carbon/electrolyte hybrid material for actuation is presented. The nanoporous carbon matrix provides a 3D network that combines mechanical strength, light weight, and low cost with an extremely high surface area. The hybrid material exhibits appreciable strength and can be loaded in compression. This electrically tunable actuator reaches strain amplitudes and mass‐specific work density values that are comparable or even superior to many conventional actuation materials.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.201200245</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2012-07, Vol.22 (14), p.3029-3034
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_201200245
source Access via Wiley Online Library
subjects actuators
hybrid materials
nanoporous carbon
nanostructures
title Electrically Tunable Nanoporous Carbon Hybrid Actuators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrically%20Tunable%20Nanoporous%20Carbon%20Hybrid%20Actuators&rft.jtitle=Advanced%20functional%20materials&rft.au=Shao,%20Li-Hua&rft.date=2012-07-24&rft.volume=22&rft.issue=14&rft.spage=3029&rft.epage=3034&rft.pages=3029-3034&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201200245&rft_dat=%3Cistex_cross%3Eark_67375_WNG_PMBL85D8_3%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true