Electrically Tunable Nanoporous Carbon Hybrid Actuators
A novel nanoporous carbon/electrolyte hybrid material is reported for use in actuation. The nanoporous carbon matrix provides a 3D network that combines mechanical strength, light weight, and low cost with an extremely high surface area. In contrast to lower dimensional nanomaterials, the nanoporous...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2012-07, Vol.22 (14), p.3029-3034 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3034 |
---|---|
container_issue | 14 |
container_start_page | 3029 |
container_title | Advanced functional materials |
container_volume | 22 |
creator | Shao, Li-Hua Biener, Juergen Jin, Hai-Jun Biener, Monika M. Baumann, Theodore F. Weissmüller, Jörg |
description | A novel nanoporous carbon/electrolyte hybrid material is reported for use in actuation. The nanoporous carbon matrix provides a 3D network that combines mechanical strength, light weight, and low cost with an extremely high surface area. In contrast to lower dimensional nanomaterials, the nanoporous carbon matrix can be prepared in the form of macroscopic monolithic samples that can be loaded in compression. The hybrid material is formed by infiltrating the free internal pore volume of the carbon with an electrolyte. Actuation is prompted by polarizing the internal interfaces via an applied electric bias. It is found that the strain amplitude is proportional to the Brunauer‐Emmett‐Teller (BET) mass specific surface area, with reversible volume strain amplitudes up to the exceptionally high value of 6.6%. The mass‐specific strain energy density compares favorably to reported values for piezoceramics and for nanoporous metal actuators.
A novel nanoporous carbon/electrolyte hybrid material for actuation is presented. The nanoporous carbon matrix provides a 3D network that combines mechanical strength, light weight, and low cost with an extremely high surface area. The hybrid material exhibits appreciable strength and can be loaded in compression. This electrically tunable actuator reaches strain amplitudes and mass‐specific work density values that are comparable or even superior to many conventional actuation materials. |
doi_str_mv | 10.1002/adfm.201200245 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_201200245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_PMBL85D8_3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4335-b603dfe5672da4d8d36625f8e6146569a1c866e5215a1a58538b9a0a0ae7c0393</originalsourceid><addsrcrecordid>eNqFj8tKw0AUhgdRsFa3rvMCqXPJXLKM6U1Iq4uK7oaTyQSiaVJmEjRvb0ukuJOz-M-B8_3wIXRP8IxgTB-gKPczigk9HhG_QBMiiAgZpuryvJP3a3Tj_QfGREoWTZBc1NZ0rjJQ10Ow6xvIaxtsoWkPrWt7H6Tg8rYJ1kPuqiJITNdD1zp_i65KqL29-80pel0uduk6zJ5XT2mShSZijIe5wKwoLReSFhAVqmBCUF4qK0gkuIiBGCWE5ZRwIMAVZyqPAR_HSoNZzKZoNvYa13rvbKkPrtqDGzTB-qStT9r6rH0E4hH4qmo7_POtk_ly85cNR7bynf0-s-A-tZBMcv22XemXzWOm-Fxpxn4ARgVqMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrically Tunable Nanoporous Carbon Hybrid Actuators</title><source>Access via Wiley Online Library</source><creator>Shao, Li-Hua ; Biener, Juergen ; Jin, Hai-Jun ; Biener, Monika M. ; Baumann, Theodore F. ; Weissmüller, Jörg</creator><creatorcontrib>Shao, Li-Hua ; Biener, Juergen ; Jin, Hai-Jun ; Biener, Monika M. ; Baumann, Theodore F. ; Weissmüller, Jörg</creatorcontrib><description>A novel nanoporous carbon/electrolyte hybrid material is reported for use in actuation. The nanoporous carbon matrix provides a 3D network that combines mechanical strength, light weight, and low cost with an extremely high surface area. In contrast to lower dimensional nanomaterials, the nanoporous carbon matrix can be prepared in the form of macroscopic monolithic samples that can be loaded in compression. The hybrid material is formed by infiltrating the free internal pore volume of the carbon with an electrolyte. Actuation is prompted by polarizing the internal interfaces via an applied electric bias. It is found that the strain amplitude is proportional to the Brunauer‐Emmett‐Teller (BET) mass specific surface area, with reversible volume strain amplitudes up to the exceptionally high value of 6.6%. The mass‐specific strain energy density compares favorably to reported values for piezoceramics and for nanoporous metal actuators.
A novel nanoporous carbon/electrolyte hybrid material for actuation is presented. The nanoporous carbon matrix provides a 3D network that combines mechanical strength, light weight, and low cost with an extremely high surface area. The hybrid material exhibits appreciable strength and can be loaded in compression. This electrically tunable actuator reaches strain amplitudes and mass‐specific work density values that are comparable or even superior to many conventional actuation materials.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201200245</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>actuators ; hybrid materials ; nanoporous carbon ; nanostructures</subject><ispartof>Advanced functional materials, 2012-07, Vol.22 (14), p.3029-3034</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4335-b603dfe5672da4d8d36625f8e6146569a1c866e5215a1a58538b9a0a0ae7c0393</citedby><cites>FETCH-LOGICAL-c4335-b603dfe5672da4d8d36625f8e6146569a1c866e5215a1a58538b9a0a0ae7c0393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201200245$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201200245$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Shao, Li-Hua</creatorcontrib><creatorcontrib>Biener, Juergen</creatorcontrib><creatorcontrib>Jin, Hai-Jun</creatorcontrib><creatorcontrib>Biener, Monika M.</creatorcontrib><creatorcontrib>Baumann, Theodore F.</creatorcontrib><creatorcontrib>Weissmüller, Jörg</creatorcontrib><title>Electrically Tunable Nanoporous Carbon Hybrid Actuators</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>A novel nanoporous carbon/electrolyte hybrid material is reported for use in actuation. The nanoporous carbon matrix provides a 3D network that combines mechanical strength, light weight, and low cost with an extremely high surface area. In contrast to lower dimensional nanomaterials, the nanoporous carbon matrix can be prepared in the form of macroscopic monolithic samples that can be loaded in compression. The hybrid material is formed by infiltrating the free internal pore volume of the carbon with an electrolyte. Actuation is prompted by polarizing the internal interfaces via an applied electric bias. It is found that the strain amplitude is proportional to the Brunauer‐Emmett‐Teller (BET) mass specific surface area, with reversible volume strain amplitudes up to the exceptionally high value of 6.6%. The mass‐specific strain energy density compares favorably to reported values for piezoceramics and for nanoporous metal actuators.
A novel nanoporous carbon/electrolyte hybrid material for actuation is presented. The nanoporous carbon matrix provides a 3D network that combines mechanical strength, light weight, and low cost with an extremely high surface area. The hybrid material exhibits appreciable strength and can be loaded in compression. This electrically tunable actuator reaches strain amplitudes and mass‐specific work density values that are comparable or even superior to many conventional actuation materials.</description><subject>actuators</subject><subject>hybrid materials</subject><subject>nanoporous carbon</subject><subject>nanostructures</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFj8tKw0AUhgdRsFa3rvMCqXPJXLKM6U1Iq4uK7oaTyQSiaVJmEjRvb0ukuJOz-M-B8_3wIXRP8IxgTB-gKPczigk9HhG_QBMiiAgZpuryvJP3a3Tj_QfGREoWTZBc1NZ0rjJQ10Ow6xvIaxtsoWkPrWt7H6Tg8rYJ1kPuqiJITNdD1zp_i65KqL29-80pel0uduk6zJ5XT2mShSZijIe5wKwoLReSFhAVqmBCUF4qK0gkuIiBGCWE5ZRwIMAVZyqPAR_HSoNZzKZoNvYa13rvbKkPrtqDGzTB-qStT9r6rH0E4hH4qmo7_POtk_ly85cNR7bynf0-s-A-tZBMcv22XemXzWOm-Fxpxn4ARgVqMg</recordid><startdate>20120724</startdate><enddate>20120724</enddate><creator>Shao, Li-Hua</creator><creator>Biener, Juergen</creator><creator>Jin, Hai-Jun</creator><creator>Biener, Monika M.</creator><creator>Baumann, Theodore F.</creator><creator>Weissmüller, Jörg</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120724</creationdate><title>Electrically Tunable Nanoporous Carbon Hybrid Actuators</title><author>Shao, Li-Hua ; Biener, Juergen ; Jin, Hai-Jun ; Biener, Monika M. ; Baumann, Theodore F. ; Weissmüller, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4335-b603dfe5672da4d8d36625f8e6146569a1c866e5215a1a58538b9a0a0ae7c0393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>actuators</topic><topic>hybrid materials</topic><topic>nanoporous carbon</topic><topic>nanostructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Li-Hua</creatorcontrib><creatorcontrib>Biener, Juergen</creatorcontrib><creatorcontrib>Jin, Hai-Jun</creatorcontrib><creatorcontrib>Biener, Monika M.</creatorcontrib><creatorcontrib>Baumann, Theodore F.</creatorcontrib><creatorcontrib>Weissmüller, Jörg</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Li-Hua</au><au>Biener, Juergen</au><au>Jin, Hai-Jun</au><au>Biener, Monika M.</au><au>Baumann, Theodore F.</au><au>Weissmüller, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrically Tunable Nanoporous Carbon Hybrid Actuators</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2012-07-24</date><risdate>2012</risdate><volume>22</volume><issue>14</issue><spage>3029</spage><epage>3034</epage><pages>3029-3034</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>A novel nanoporous carbon/electrolyte hybrid material is reported for use in actuation. The nanoporous carbon matrix provides a 3D network that combines mechanical strength, light weight, and low cost with an extremely high surface area. In contrast to lower dimensional nanomaterials, the nanoporous carbon matrix can be prepared in the form of macroscopic monolithic samples that can be loaded in compression. The hybrid material is formed by infiltrating the free internal pore volume of the carbon with an electrolyte. Actuation is prompted by polarizing the internal interfaces via an applied electric bias. It is found that the strain amplitude is proportional to the Brunauer‐Emmett‐Teller (BET) mass specific surface area, with reversible volume strain amplitudes up to the exceptionally high value of 6.6%. The mass‐specific strain energy density compares favorably to reported values for piezoceramics and for nanoporous metal actuators.
A novel nanoporous carbon/electrolyte hybrid material for actuation is presented. The nanoporous carbon matrix provides a 3D network that combines mechanical strength, light weight, and low cost with an extremely high surface area. The hybrid material exhibits appreciable strength and can be loaded in compression. This electrically tunable actuator reaches strain amplitudes and mass‐specific work density values that are comparable or even superior to many conventional actuation materials.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.201200245</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2012-07, Vol.22 (14), p.3029-3034 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_crossref_primary_10_1002_adfm_201200245 |
source | Access via Wiley Online Library |
subjects | actuators hybrid materials nanoporous carbon nanostructures |
title | Electrically Tunable Nanoporous Carbon Hybrid Actuators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrically%20Tunable%20Nanoporous%20Carbon%20Hybrid%20Actuators&rft.jtitle=Advanced%20functional%20materials&rft.au=Shao,%20Li-Hua&rft.date=2012-07-24&rft.volume=22&rft.issue=14&rft.spage=3029&rft.epage=3034&rft.pages=3029-3034&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201200245&rft_dat=%3Cistex_cross%3Eark_67375_WNG_PMBL85D8_3%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |